File size: 2,343 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional
import torch
from torch import Tensor
@torch.jit.script
def script_skip_tensor_list(x: List[Tensor], mask):
res = [xi[mask] if xi.size(0) == mask.size(0) else xi[:, mask] for xi in x]
outputs = []
for i, t in enumerate(res):
if t.numel() != 0:
outputs.append(t)
else:
outputs.append(x[i])
return outputs
@torch.jit.script
def script_skip_tensor(x: Tensor, mask):
# None case
if x.size(0) == 0:
return x
res = x[mask] if x.size(0) == mask.size(0) else x[:, mask]
if res.numel() == 0:
return x
else:
return res
@torch.jit.script
def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int):
"""
Expand 2D/3D tensor on dim=1
"""
if x is None:
return None
assert x.dim() == 2 or x.dim() == 3
assert trg_dim >= x.size(1), (trg_dim, x.size())
if trg_dim == x.size(1):
return x
dims = [x.size(0), trg_dim - x.size(1)]
if x.dim() == 3:
dims.append(x.size(2))
x = torch.cat([x, torch.zeros(dims).to(x).fill_(padding_idx)], 1)
return x
@torch.jit.script
def coalesce(x: Optional[Tensor], y: Tensor) -> Tensor:
return x if x is not None else y
@torch.jit.script
def fill_tensors(
x: Optional[Tensor], mask, y: Optional[Tensor], padding_idx: int
) -> Optional[Tensor]:
"""
Filling tensor x with y at masked positions (dim=0).
"""
if x is None or x.size()[0] == 0 or y is None:
return x
assert x.dim() == y.dim() and mask.size(0) == x.size(0)
assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2))
n_selected = mask.sum()
if n_selected == 0:
return x
assert n_selected == y.size(0)
if n_selected == x.size(0):
return y
if x.size(1) < y.size(1):
x = expand_2d_or_3d_tensor(x, y.size(1), padding_idx)
x[mask] = y
elif x.size(1) > y.size(1):
x[mask] = torch.tensor(padding_idx).type_as(x)
if x.dim() == 2:
x[mask, : y.size(1)] = y
else:
x[mask, : y.size(1), :] = y
else:
x[mask] = y
return x
|