File size: 6,453 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
This file implements:
Ghazvininejad, Marjan, et al.
"Constant-time machine translation with conditional masked language models."
arXiv preprint arXiv:1904.09324 (2019).
"""

from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel
from fairseq.utils import new_arange


def _skeptical_unmasking(output_scores, output_masks, p):
    sorted_index = output_scores.sort(-1)[1]
    boundary_len = (
        (output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p
    ).long()
    skeptical_mask = new_arange(output_masks) < boundary_len
    return skeptical_mask.scatter(1, sorted_index, skeptical_mask)


@register_model("cmlm_transformer")
class CMLMNATransformerModel(NATransformerModel):
    @staticmethod
    def add_args(parser):
        NATransformerModel.add_args(parser)

    def forward(
        self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
    ):
        assert not self.decoder.src_embedding_copy, "do not support embedding copy."

        # encoding
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
        # length prediction
        length_out = self.decoder.forward_length(
            normalize=False, encoder_out=encoder_out
        )
        length_tgt = self.decoder.forward_length_prediction(
            length_out, encoder_out, tgt_tokens
        )

        # decoding
        word_ins_out = self.decoder(
            normalize=False,
            prev_output_tokens=prev_output_tokens,
            encoder_out=encoder_out,
        )
        word_ins_mask = prev_output_tokens.eq(self.unk)

        return {
            "word_ins": {
                "out": word_ins_out,
                "tgt": tgt_tokens,
                "mask": word_ins_mask,
                "ls": self.args.label_smoothing,
                "nll_loss": True,
            },
            "length": {
                "out": length_out,
                "tgt": length_tgt,
                "factor": self.decoder.length_loss_factor,
            },
        }

    def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):

        step = decoder_out.step
        max_step = decoder_out.max_step

        output_tokens = decoder_out.output_tokens
        output_scores = decoder_out.output_scores
        history = decoder_out.history

        # execute the decoder
        output_masks = output_tokens.eq(self.unk)
        _scores, _tokens = self.decoder(
            normalize=True,
            prev_output_tokens=output_tokens,
            encoder_out=encoder_out,
        ).max(-1)
        output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
        output_scores.masked_scatter_(output_masks, _scores[output_masks])

        if history is not None:
            history.append(output_tokens.clone())

        # skeptical decoding (depend on the maximum decoding steps.)
        if (step + 1) < max_step:
            skeptical_mask = _skeptical_unmasking(
                output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step
            )

            output_tokens.masked_fill_(skeptical_mask, self.unk)
            output_scores.masked_fill_(skeptical_mask, 0.0)

            if history is not None:
                history.append(output_tokens.clone())

        return decoder_out._replace(
            output_tokens=output_tokens,
            output_scores=output_scores,
            attn=None,
            history=history,
        )


@register_model_architecture("cmlm_transformer", "cmlm_transformer")
def cmlm_base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", True)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.apply_bert_init = getattr(args, "apply_bert_init", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # --- special arguments ---
    args.sg_length_pred = getattr(args, "sg_length_pred", False)
    args.pred_length_offset = getattr(args, "pred_length_offset", False)
    args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
    args.ngram_predictor = getattr(args, "ngram_predictor", 1)
    args.src_embedding_copy = getattr(args, "src_embedding_copy", False)


@register_model_architecture("cmlm_transformer", "cmlm_transformer_wmt_en_de")
def cmlm_wmt_en_de(args):
    cmlm_base_architecture(args)