File size: 20,928 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import logging
import math
from typing import Optional, Tuple
from omegaconf import II
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.modules import (
Fp32GroupNorm,
Fp32LayerNorm,
GumbelVectorQuantizer,
KmeansVectorQuantizer,
TransposeLast,
)
from fairseq.tasks import FairseqTask
from fairseq.utils import buffered_arange
logger = logging.getLogger(__name__)
AGGREGATOR_CHOICES = ChoiceEnum(["cnn", "gru"])
PROJECT_FEATURES_CHOICES = ChoiceEnum(["none", "same", "new"])
ACTIVATION_CHOICES = ChoiceEnum(["relu", "gelu"])
VQ_TYPE_CHOICES = ChoiceEnum(["none", "gumbel", "kmeans"])
@dataclass
class Wav2VecConfig(FairseqDataclass):
prediction_steps: int = field(
default=12, metadata={"help": "number of steps ahead to predict"}
)
sample_distance: Optional[int] = field(
default=None,
metadata={
"help": "sample distance from target. does not work properly with cross-sampling"
},
)
cross_sample_negatives: int = field(
default=0, metadata={"help": "num of cross sampled negatives"}
)
num_negatives: int = field(
default=10, metadata={"help": "num of sampled negatives"}
)
conv_feature_layers: str = field(
default="[(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1), (512, 1, 1)]",
metadata={
"help": "convolutional feature extraction layers [(dim, kernel_size, stride), ...]"
},
)
conv_aggregator_layers: str = field(
default="[(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]",
metadata={
"help": "convolutional aggregator layers [(dim, kernel_size, stride), ...]"
},
)
dropout: float = field(
default=0.0, metadata={"help": "dropout to apply within the model"}
)
dropout_features: float = field(
default=0.0, metadata={"help": "dropout to apply to the features"}
)
dropout_agg: float = field(
default=0.0, metadata={"help": "dropout to apply after aggregation step"}
)
aggregator: AGGREGATOR_CHOICES = field(
default="cnn", metadata={"help": "type of aggregator to use"}
)
gru_dim: int = field(default=512, metadata={"help": "GRU dimensionality"})
no_conv_bias: bool = field(
default=False, metadata={"help": "if set, does not learn bias for conv layers"}
)
agg_zero_pad: bool = field(
default=False,
metadata={"help": "if set, zero pads in aggregator instead of repl pad"},
)
skip_connections_feat: bool = field(
default=False,
metadata={"help": "if set, adds skip connections to the feature extractor"},
)
skip_connections_agg: bool = field(
default=True,
metadata={"help": "if set, adds skip connections to the aggregator"},
)
residual_scale: float = field(
default=0.5, metadata={"help": "scales residual by sqrt(value)"}
)
log_compression: bool = field(
default=True,
metadata={"help": "if set, adds a log compression to feature extractor"},
)
balanced_classes: bool = field(
default=False,
metadata={"help": "if set, loss is scaled to balance for number of negatives"},
)
project_features: PROJECT_FEATURES_CHOICES = field(
default="none",
metadata={
"help": "if not none, features are projected using the (same or new) aggregator"
},
)
non_affine_group_norm: bool = field(
default=False, metadata={"help": "if set, group norm is not affine"}
)
offset: str = field(
default="auto",
metadata={
"help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value"
},
)
activation: ACTIVATION_CHOICES = field(
default="relu",
metadata={
"help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value"
},
)
vq_type: VQ_TYPE_CHOICES = field(
default="none", metadata={"help": "which type of quantizer to use"}
)
vq_vars: int = field(
default=320,
metadata={"help": "project to this many vector quantized variables per group"},
)
vq_groups: int = field(
default=2, metadata={"help": "number of groups of latent variables"}
)
vq_dim: int = field(
default=0,
metadata={
"help": "uses this dimensionality for quantized vectors. 0 to use model dim // groups"
},
)
vq_depth: int = field(
default=1, metadata={"help": "number of layers for vq weight projection"}
)
combine_groups: bool = field(
default=False, metadata={"help": "if set, variables are shared among groups"}
)
vq_temp: Tuple[float, float, float] = field(
default=(2.0, 0.5, 0.999995),
metadata={
"help": "temperature for latent variable sampling with gumbel softmax. should be a tuple of 3 values (start, end, decay)"
},
)
vq_gamma: float = field(
default=0.25,
metadata={"help": "gamma parameter for kmeans style vector quantization"},
)
infonce: bool = II("criterion.infonce")
@register_model("wav2vec", dataclass=Wav2VecConfig)
class Wav2VecModel(BaseFairseqModel):
@classmethod
def build_model(cls, cfg: Wav2VecConfig, task: FairseqTask):
"""Build a new model instance."""
model = Wav2VecModel(cfg)
logger.info(model)
return model
def __init__(self, cfg: Wav2VecConfig):
super().__init__()
self.prediction_steps = cfg.prediction_steps
offset = cfg.offset
if cfg.activation == "relu":
activation = nn.ReLU()
elif cfg.activation == "gelu":
activation = nn.GELU()
else:
raise Exception("unknown activation " + cfg.activation)
feature_enc_layers = eval(cfg.conv_feature_layers)
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
log_compression=cfg.log_compression,
skip_connections=cfg.skip_connections_feat,
residual_scale=cfg.residual_scale,
non_affine_group_norm=cfg.non_affine_group_norm,
activation=activation,
)
embed = feature_enc_layers[-1][0]
self.vector_quantizer = None
if cfg.vq_type == "gumbel":
self.vector_quantizer = GumbelVectorQuantizer(
dim=embed,
num_vars=cfg.vq_vars,
temp=cfg.vq_temp,
groups=cfg.vq_groups,
combine_groups=cfg.combine_groups,
vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed,
time_first=False,
activation=activation,
weight_proj_depth=cfg.vq_depth,
weight_proj_factor=2,
)
elif cfg.vq_type == "kmeans":
self.vector_quantizer = KmeansVectorQuantizer(
dim=embed,
num_vars=cfg.vq_vars,
groups=cfg.vq_groups,
combine_groups=cfg.combine_groups,
vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed,
time_first=False,
gamma=cfg.vq_gamma,
)
else:
assert (
cfg.vq_type == "none" or cfg.vq_type is None
), "Unknown quantizer type"
if cfg.offset == "auto":
jin = 0
rin = 0
for _, k, stride in feature_enc_layers:
if rin == 0:
rin = k
rin = rin + (k - 1) * jin
if jin == 0:
jin = stride
else:
jin *= stride
offset = math.ceil(rin / jin)
offset = int(offset)
def make_aggregator():
if cfg.aggregator == "cnn":
agg_layers = eval(cfg.conv_aggregator_layers)
agg_dim = agg_layers[-1][0]
feature_aggregator = ConvAggegator(
conv_layers=agg_layers,
embed=embed,
dropout=cfg.dropout,
skip_connections=cfg.skip_connections_agg,
residual_scale=cfg.residual_scale,
non_affine_group_norm=cfg.non_affine_group_norm,
conv_bias=not cfg.no_conv_bias,
zero_pad=cfg.agg_zero_pad,
activation=activation,
)
elif cfg.aggregator == "gru":
agg_dim = cfg.gru_dim
feature_aggregator = nn.Sequential(
TransposeLast(),
nn.GRU(
input_size=embed,
hidden_size=agg_dim,
num_layers=1,
dropout=cfg.dropout,
),
TransposeLast(deconstruct_idx=0),
)
else:
raise Exception("unknown aggregator type " + cfg.aggregator)
return feature_aggregator, agg_dim
self.feature_aggregator, agg_dim = make_aggregator()
self.wav2vec_predictions = Wav2VecPredictionsModel(
in_dim=agg_dim,
out_dim=embed,
prediction_steps=cfg.prediction_steps,
n_negatives=cfg.num_negatives,
cross_sample_negatives=cfg.cross_sample_negatives,
sample_distance=cfg.sample_distance,
dropout=cfg.dropout,
offset=offset,
balanced_classes=cfg.balanced_classes,
infonce=cfg.infonce,
)
self.dropout_feats = nn.Dropout(p=cfg.dropout_features)
self.dropout_agg = nn.Dropout(p=cfg.dropout_agg)
if cfg.project_features == "none":
self.project_features = None
elif cfg.project_features == "same":
self.project_features = self.feature_aggregator
elif cfg.project_features == "new":
self.project_features, _ = make_aggregator()
def forward(self, source):
result = {}
features = self.feature_extractor(source)
if self.vector_quantizer:
q_res = self.vector_quantizer(features)
features = q_res["x"]
for k in q_res.keys():
if k != "x":
result[k] = q_res[k]
x = self.dropout_feats(features)
x = self.feature_aggregator(x)
x = self.dropout_agg(x)
if self.project_features is not None:
features = self.project_features(features)
x, targets = self.wav2vec_predictions(x, features)
result["cpc_logits"] = x
result["cpc_targets"] = targets
return result
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
def max_positions(self):
"""Maximum length supported by the model."""
return sys.maxsize
def get_logits(self, net_output):
logits = net_output["cpc_logits"]
return logits
def get_targets(self, sample, net_output):
t = net_output["cpc_targets"]
if isinstance(t, tuple):
t = t[0]
return t.contiguous()
def get_target_weights(self, targets, net_output):
targets = net_output["cpc_targets"]
if isinstance(targets, tuple) and targets[-1] is not None:
return targets[-1]
return None
def get_extra_losses(self, net_output):
loss = None
if "prob_perplexity" in net_output:
loss = net_output["num_vars"] - net_output["prob_perplexity"]
elif "kmeans_loss" in net_output:
loss = net_output["kmeans_loss"]
return loss
def norm_block(is_layer_norm, dim, affine=True):
if is_layer_norm:
mod = nn.Sequential(
TransposeLast(),
Fp32LayerNorm(dim, elementwise_affine=affine),
TransposeLast(),
)
else:
mod = Fp32GroupNorm(1, dim, affine=affine)
return mod
class ConvFeatureExtractionModel(nn.Module):
def __init__(
self,
conv_layers,
dropout,
log_compression,
skip_connections,
residual_scale,
non_affine_group_norm,
activation,
):
super().__init__()
def block(n_in, n_out, k, stride):
return nn.Sequential(
nn.Conv1d(n_in, n_out, k, stride=stride, bias=False),
nn.Dropout(p=dropout),
norm_block(
is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm
),
activation,
)
in_d = 1
self.conv_layers = nn.ModuleList()
for dim, k, stride in conv_layers:
self.conv_layers.append(block(in_d, dim, k, stride))
in_d = dim
self.log_compression = log_compression
self.skip_connections = skip_connections
self.residual_scale = math.sqrt(residual_scale)
def forward(self, x):
# BxT -> BxCxT
x = x.unsqueeze(1)
for conv in self.conv_layers:
residual = x
x = conv(x)
if self.skip_connections and x.size(1) == residual.size(1):
tsz = x.size(2)
r_tsz = residual.size(2)
residual = residual[..., :: r_tsz // tsz][..., :tsz]
x = (x + residual) * self.residual_scale
if self.log_compression:
x = x.abs()
x = x + 1
x = x.log()
return x
class ZeroPad1d(nn.Module):
def __init__(self, pad_left, pad_right):
super().__init__()
self.pad_left = pad_left
self.pad_right = pad_right
def forward(self, x):
return F.pad(x, (self.pad_left, self.pad_right))
class ConvAggegator(nn.Module):
def __init__(
self,
conv_layers,
embed,
dropout,
skip_connections,
residual_scale,
non_affine_group_norm,
conv_bias,
zero_pad,
activation,
):
super().__init__()
def block(n_in, n_out, k, stride):
# padding dims only really make sense for stride = 1
ka = k // 2
kb = ka - 1 if k % 2 == 0 else ka
pad = (
ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0))
)
return nn.Sequential(
pad,
nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias),
nn.Dropout(p=dropout),
norm_block(False, n_out, affine=not non_affine_group_norm),
activation,
)
in_d = embed
self.conv_layers = nn.ModuleList()
self.residual_proj = nn.ModuleList()
for dim, k, stride in conv_layers:
if in_d != dim and skip_connections:
self.residual_proj.append(nn.Conv1d(in_d, dim, 1, bias=False))
else:
self.residual_proj.append(None)
self.conv_layers.append(block(in_d, dim, k, stride))
in_d = dim
self.conv_layers = nn.Sequential(*self.conv_layers)
self.skip_connections = skip_connections
self.residual_scale = math.sqrt(residual_scale)
def forward(self, x):
for rproj, conv in zip(self.residual_proj, self.conv_layers):
residual = x
x = conv(x)
if self.skip_connections:
if rproj is not None:
residual = rproj(residual)
x = (x + residual) * self.residual_scale
return x
class Wav2VecPredictionsModel(nn.Module):
def __init__(
self,
in_dim,
out_dim,
prediction_steps,
n_negatives,
cross_sample_negatives,
sample_distance,
dropout,
offset,
balanced_classes,
infonce,
):
super().__init__()
self.n_negatives = n_negatives
self.cross_sample_negatives = cross_sample_negatives
self.sample_distance = sample_distance
self.project_to_steps = nn.ConvTranspose2d(
in_dim, out_dim, (1, prediction_steps)
)
self.dropout = nn.Dropout(p=dropout)
self.offset = offset
self.balanced_classes = balanced_classes
self.infonce = infonce
def sample_negatives(self, y):
bsz, fsz, tsz = y.shape
y = y.transpose(0, 1) # BCT -> CBT
y = y.contiguous().view(fsz, -1) # CBT => C(BxT)
cross_high = tsz * bsz
high = tsz if self.sample_distance is None else min(tsz, self.sample_distance)
assert high > 1
neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz))
with torch.no_grad():
if self.n_negatives > 0:
tszs = (
buffered_arange(tsz)
.unsqueeze(-1)
.expand(-1, self.n_negatives)
.flatten()
)
neg_idxs = torch.randint(
low=0, high=high - 1, size=(bsz, self.n_negatives * tsz)
)
neg_idxs[neg_idxs >= tszs] += 1
if self.cross_sample_negatives > 0:
tszs = (
buffered_arange(tsz)
.unsqueeze(-1)
.expand(-1, self.cross_sample_negatives)
.flatten()
)
cross_neg_idxs = torch.randint(
low=0,
high=cross_high - 1,
size=(bsz, self.cross_sample_negatives * tsz),
)
cross_neg_idxs[cross_neg_idxs >= tszs] += 1
if self.n_negatives > 0:
for i in range(1, bsz):
neg_idxs[i] += i * high
else:
neg_idxs = cross_neg_idxs
if self.cross_sample_negatives > 0 and self.n_negatives > 0:
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1)
negs = y[..., neg_idxs.view(-1)]
negs = negs.view(
fsz, bsz, self.n_negatives + self.cross_sample_negatives, tsz
).permute(
2, 1, 0, 3
) # to NxBxCxT
return negs
def forward(self, x, y):
x = x.unsqueeze(-1)
x = self.project_to_steps(x) # BxCxTxS
x = self.dropout(x)
negatives = self.sample_negatives(y)
y = y.unsqueeze(0)
targets = torch.cat([y, negatives], dim=0) # Copies x B x C x T
copies = targets.size(0)
bsz, dim, tsz, steps = x.shape
steps = min(steps, tsz - self.offset)
predictions = x.new(
bsz * copies * (tsz - self.offset + 1) * steps
- ((steps + 1) * steps // 2) * copies * bsz
)
if self.infonce:
labels = predictions.new_full(
(predictions.shape[0] // copies,), 0, dtype=torch.long
)
else:
labels = torch.zeros_like(predictions)
weights = (
torch.full_like(labels, 1 / self.n_negatives)
if self.balanced_classes and not self.infonce
else None
)
start = end = 0
for i in range(steps):
offset = i + self.offset
end = start + (tsz - offset) * bsz * copies
if self.infonce:
predictions[start:end] = torch.einsum(
"bct,nbct->tbn", x[..., :-offset, i], targets[..., offset:]
).flatten()
else:
pos_num = (end - start) // copies
predictions[start:end] = torch.einsum(
"bct,nbct->nbt", x[..., :-offset, i], targets[..., offset:]
).flatten()
labels[start : start + pos_num] = 1.0
if weights is not None:
weights[start : start + pos_num] = 1.0
start = end
assert end == predictions.numel(), "{} != {}".format(end, predictions.numel())
if self.infonce:
predictions = predictions.view(-1, copies)
else:
if weights is not None:
labels = (labels, weights)
return predictions, labels
|