File size: 3,742 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch


logger = logging.getLogger(__name__)


class NanDetector:
    """
    Detects the first NaN or Inf in forward and/or backward pass and logs, together with the module name
    """

    def __init__(self, model, forward=True, backward=True):
        self.bhooks = []
        self.fhooks = []
        self.forward = forward
        self.backward = backward
        self.named_parameters = list(model.named_parameters())
        self.reset()

        for name, mod in model.named_modules():
            mod.__module_name = name
            self.add_hooks(mod)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_traceback):
        # Dump out all model gnorms to enable better debugging
        norm = {}
        gradients = {}
        for name, param in self.named_parameters:
            if param.grad is not None:
                grad_norm = torch.norm(param.grad.data.float(), p=2)
                norm[name] = grad_norm.item()
                if torch.isnan(grad_norm).any() or torch.isinf(grad_norm).any():
                    gradients[name] = param.grad.data
        if len(gradients) > 0:
            logger.info("Detected nan/inf grad norm, dumping norms...")
            logger.info(f"norms: {norm}")
            logger.info(f"gradients: {gradients}")

        self.close()

    def add_hooks(self, module):
        if self.forward:
            self.fhooks.append(module.register_forward_hook(self.fhook_fn))
        if self.backward:
            self.bhooks.append(module.register_backward_hook(self.bhook_fn))

    def reset(self):
        self.has_printed_f = False
        self.has_printed_b = False

    def _detect(self, tensor, name, backward):
        err = None
        if (
            torch.is_floating_point(tensor)
            # single value tensors (like the loss) will not provide much info
            and tensor.numel() >= 2
        ):
            with torch.no_grad():
                if torch.isnan(tensor).any():
                    err = "NaN"
                elif torch.isinf(tensor).any():
                    err = "Inf"
        if err is not None:
            err = f"{err} detected in output of {name}, shape: {tensor.shape}, {'backward' if backward else 'forward'}"
        return err

    def _apply(self, module, inp, x, backward):
        if torch.is_tensor(x):
            if isinstance(inp, tuple) and len(inp) > 0:
                inp = inp[0]
            err = self._detect(x, module.__module_name, backward)
            if err is not None:
                if torch.is_tensor(inp) and not backward:
                    err += (
                        f" input max: {inp.max().item()}, input min: {inp.min().item()}"
                    )

                has_printed_attr = "has_printed_b" if backward else "has_printed_f"
                logger.warning(err)
                setattr(self, has_printed_attr, True)
        elif isinstance(x, dict):
            for v in x.values():
                self._apply(module, inp, v, backward)
        elif isinstance(x, list) or isinstance(x, tuple):
            for v in x:
                self._apply(module, inp, v, backward)

    def fhook_fn(self, module, inp, output):
        if not self.has_printed_f:
            self._apply(module, inp, output, backward=False)

    def bhook_fn(self, module, inp, output):
        if not self.has_printed_b:
            self._apply(module, inp, output, backward=True)

    def close(self):
        for hook in self.fhooks + self.bhooks:
            hook.remove()