File size: 6,757 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional
import torch.optim
from fairseq.dataclass import FairseqDataclass
from fairseq.optim import FairseqOptimizer, register_optimizer, _build_optimizer
from fairseq.optim.lr_scheduler import FairseqLRScheduler, build_lr_scheduler
from omegaconf import II, open_dict
logger = logging.getLogger(__name__)
@dataclass
class OptimizerAndSchedulerConfig(FairseqDataclass):
optimizer: Any = None
lr_scheduler: Optional[Any] = None
lr: List = II("optimization.lr")
lr_float: Optional[
float
] = None # this makes it easier to sweep on learning rate with auto sweepers
@dataclass
class CompositeOptimizerConfig(FairseqDataclass):
groups: Dict[str, Any] = field(
default_factory=lambda: {},
metadata={
"help": "optimizer name -> optimizer OptimizerAndSchedulerConfig. "
"Configures a different optimizer and (optionally) lr scheduler for each parameter group"
},
)
@register_optimizer("composite", dataclass=CompositeOptimizerConfig)
class FairseqCompositeOptimizer(FairseqOptimizer):
optimizers: Dict[str, FairseqOptimizer] = {}
lr_schedulers: Dict[str, FairseqLRScheduler] = {}
lr_scheduler: FairseqLRScheduler = None
_optimizer: torch.optim.Optimizer
def __init__(self, cfg: CompositeOptimizerConfig, params):
super().__init__(cfg)
assert (
len(params) > 1
), "Composite optimizer only works when there are multiple parameter groups (try fp16_no_flatten_grads: true)"
groupped_params = defaultdict(list)
for p in params:
group = getattr(p, "param_group", "default")
groupped_params[group].append(p)
assert groupped_params.keys() == cfg.groups.keys(), (
f"Parameter groups {groupped_params.keys()} and optimizer groups {cfg.groups.keys()} are not the same! "
"Try setting 'param_group' on your parameters in the model."
)
for group, group_params in groupped_params.items():
group_cfg = cfg.groups[group]
with open_dict(group_cfg):
if group_cfg.lr_float is not None:
group_cfg.optimizer.lr = [group_cfg.lr_float]
group_cfg.lr_scheduler.lr = [group_cfg.lr_float]
else:
group_cfg.optimizer.lr = group_cfg.lr
group_cfg.lr_scheduler.lr = group_cfg.lr
self.optimizers[group] = _build_optimizer(group_cfg.optimizer, group_params)
if group_cfg.lr_scheduler is not None:
self.lr_schedulers[group] = build_lr_scheduler(
group_cfg.lr_scheduler, self.optimizers[group]
)
if len(self.lr_schedulers) > 0:
assert len(self.lr_schedulers) == len(self.optimizers), (
f"Please provide an lr scheduler for each optimizer to use pass_through scheduler. "
f"Optimizers: {self.optimizers}; Lr scheds: {self.lr_schedulers}"
)
self.lr_scheduler = CompositeLRScheduler(self.lr_schedulers)
self._optimizer = CompositeOptimizer(self.optimizers)
@property
def supports_groups(self):
return True
@property
def param_groups(self):
for opt in self.optimizers.values():
for group in opt.param_groups:
yield group
def get_lr(self):
"""Return the current learning rate."""
k = (
"default"
if "default" in self.optimizers
else next(iter(self.optimizers.keys()))
)
return self.optimizers[k].param_groups[0]["lr"]
def state_dict(self):
"""Return the LR scheduler state dict."""
return {k: s.state_dict() for k, s in self.optimizers.items()}
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an LR scheduler state dict."""
for k, state in state_dict.items():
if k not in self.optimizers:
# skip extra keys like "loss_scale" added by fp16 optimizer
continue
overrides = (
optimizer_overrides[k]
if isinstance(optimizer_overrides, dict) and k in optimizer_overrides
else None
)
self.optimizers[k].load_state_dict(state, optimizer_overrides=overrides)
class CompositeOptimizer(torch.optim.Optimizer):
def __init__(self, optimizers: Dict[str, FairseqOptimizer]):
self.optimizers = optimizers
@property
def supports_memory_efficient_fp16(self):
return all(o.supports_memory_efficient_fp16 for o in self.optimizers.values())
@property
def supports_flat_params(self):
return all(o.supports_flat_params for o in self.optimizers.values())
def step(self, closure=None, groups=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for k, opt in self.optimizers.items():
if groups is None or k in groups:
opt.step()
return loss
def zero_grad(self):
for opt in self.optimizers.values():
opt.zero_grad()
class CompositeLRScheduler(FairseqLRScheduler):
def __init__(self, lr_schedulers):
super().__init__(None, None)
self.lr_schedulers = lr_schedulers
def state_dict(self):
"""Return the LR scheduler state dict."""
return {k: s.state_dict() for k, s in self.lr_schedulers.items()}
def load_state_dict(self, state_dict):
"""Load an LR scheduler state dict."""
for k, state in state_dict.items():
self.lr_schedulers[k].load_state_dict(state)
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
for s in self.lr_schedulers.values():
s.step_begin_epoch(epoch)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
for s in self.lr_schedulers.values():
s.step(epoch)
def step_update(self, num_updates):
"""Update the learning rate after each update."""
return {k: s.step_update(num_updates) for k, s in self.lr_schedulers.items()}
|