File size: 13,952 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
Dictionary,
IdDataset,
LMContextWindowDataset,
MonolingualDataset,
NestedDictionaryDataset,
NumelDataset,
PadDataset,
PrependTokenDataset,
StripTokenDataset,
TokenBlockDataset,
TruncatedDictionary,
data_utils,
)
from fairseq.data.indexed_dataset import get_available_dataset_impl
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.tasks import LegacyFairseqTask, register_task
from omegaconf import II
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"])
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"])
logger = logging.getLogger(__name__)
@dataclass
class LanguageModelingConfig(FairseqDataclass):
data: Optional[str] = field(
default=None, metadata={"help": "path to data directory"}
)
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field(
default="none",
metadata={
"help": 'If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.'
},
)
tokens_per_sample: int = field(
default=1024,
metadata={"help": "max number of tokens per sample for LM dataset"},
)
output_dictionary_size: int = field(
default=-1, metadata={"help": "limit the size of output dictionary"}
)
self_target: bool = field(default=False, metadata={"help": "include self target"})
future_target: bool = field(
default=False, metadata={"help": "include future target"}
)
past_target: bool = field(default=False, metadata={"help": "include past target"})
add_bos_token: bool = field(
default=False, metadata={"help": "prepend beginning of sentence token (<s>)"}
)
max_target_positions: Optional[int] = field(
default=None, metadata={"help": "max number of tokens in the target sequence"}
)
shorten_method: SHORTEN_METHOD_CHOICES = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed --tokens-per-sample"
},
)
shorten_data_split_list: str = field(
default="",
metadata={
"help": "comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)'
},
)
pad_to_fixed_length: Optional[bool] = field(
default=False,
metadata={"help": "pad to fixed length"},
)
pad_to_fixed_bsz: Optional[bool] = field(
default=False,
metadata={"help": "boolean to pad to fixed batch size"},
)
# TODO common vars below add to parent
seed: int = II("common.seed")
batch_size: Optional[int] = II("dataset.batch_size")
batch_size_valid: Optional[int] = II("dataset.batch_size_valid")
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II(
"dataset.dataset_impl"
)
data_buffer_size: int = II("dataset.data_buffer_size")
tpu: bool = II("common.tpu")
use_plasma_view: bool = II("common.use_plasma_view")
plasma_path: str = II("common.plasma_path")
@register_task("language_modeling", dataclass=LanguageModelingConfig)
class LanguageModelingTask(LegacyFairseqTask):
"""
Train a language model.
Args:
dictionary (~fairseq.data.Dictionary): the dictionary for the input of
the language model
output_dictionary (~fairseq.data.Dictionary): the dictionary for the
output of the language model. In most cases it will be the same as
*dictionary*, but could possibly be a more limited version of the
dictionary (if ``--output-dictionary-size`` is used).
targets (List[str]): list of the target types that the language model
should predict. Can be one of "self", "future", and "past".
Defaults to "future".
.. note::
The language modeling task is compatible with :mod:`fairseq-train`,
:mod:`fairseq-generate`, :mod:`fairseq-interactive` and
:mod:`fairseq-eval-lm`.
The language modeling task provides the following additional command-line
arguments:
.. argparse::
:ref: fairseq.tasks.language_modeling_parser
:prog:
"""
def __init__(self, args, dictionary, output_dictionary=None, targets=None):
super().__init__(args)
self.dictionary = dictionary
self.output_dictionary = output_dictionary or dictionary
if targets is None:
targets = ["future"]
self.targets = targets
@classmethod
def setup_dictionary(cls, args, **kwargs):
dictionary = None
output_dictionary = None
if args.data:
paths = utils.split_paths(args.data)
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
output_dictionary = dictionary
if args.output_dictionary_size >= 0:
output_dictionary = TruncatedDictionary(
dictionary, args.output_dictionary_size
)
return (dictionary, output_dictionary)
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs)
# upgrade old checkpoints
if getattr(args, "exclude_self_target", False):
args.self_target = False
targets = []
if getattr(args, "self_target", False):
targets.append("self")
if getattr(args, "future_target", False):
targets.append("future")
if getattr(args, "past_target", False):
targets.append("past")
if len(targets) == 0:
# standard language modeling
targets = ["future"]
return cls(args, dictionary, output_dictionary, targets=targets)
def build_model(self, args, from_checkpoint=False):
model = super().build_model(args, from_checkpoint)
for target in self.targets:
if target not in model.supported_targets:
raise ValueError(
"Unsupported language modeling target: {}".format(target)
)
return model
def load_dataset(
self, split: str, epoch=1, combine=False, **kwargs
) -> MonolingualDataset:
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, valid1, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
# each process has its own copy of the raw data (likely to be an np.memmap)
dataset = data_utils.load_indexed_dataset(
split_path, self.dictionary, self.args.dataset_impl, combine=combine
)
if dataset is None:
raise FileNotFoundError(f"Dataset not found: {split} ({split_path})")
dataset = maybe_shorten_dataset(
dataset,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.tokens_per_sample,
self.args.seed,
)
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample,
pad=self.dictionary.pad(),
eos=self.dictionary.eos(),
break_mode=self.args.sample_break_mode,
include_targets=True,
use_plasma_view=self.args.use_plasma_view,
split_path=split_path,
plasma_path=self.args.plasma_path,
)
add_eos_for_other_targets = (
self.args.sample_break_mode is not None
and self.args.sample_break_mode != "none"
)
fixed_pad_length = None
if self.args.pad_to_fixed_length:
fixed_pad_length = self.args.tokens_per_sample
pad_to_bsz = None
if self.args.pad_to_fixed_bsz:
pad_to_bsz = (
self.args.batch_size_valid if "valid" in split else self.args.batch_size
)
self.datasets[split] = MonolingualDataset(
dataset=dataset,
sizes=dataset.sizes,
src_vocab=self.dictionary,
tgt_vocab=self.output_dictionary,
add_eos_for_other_targets=add_eos_for_other_targets,
shuffle=True,
targets=self.targets,
add_bos_token=self.args.add_bos_token,
fixed_pad_length=fixed_pad_length,
pad_to_bsz=pad_to_bsz,
)
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
"""
Generate batches for inference. We prepend an eos token to src_tokens
(or bos if `--add-bos-token` is set) and we append a <pad> to target.
This is convenient both for generation with a prefix and LM scoring.
"""
dataset = StripTokenDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
src_dataset = PrependTokenDataset(
dataset,
token=(
self.source_dictionary.bos()
if getattr(self.args, "add_bos_token", False)
else self.source_dictionary.eos()
),
)
tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad())
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": PadDataset(
tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False
),
},
sizes=[np.array(src_lengths)],
)
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
# Generation will always be conditioned on bos_token
if getattr(self.args, "add_bos_token", False):
bos_token = self.source_dictionary.bos()
else:
bos_token = self.source_dictionary.eos()
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the language_modeling task is not supported"
)
# SequenceGenerator doesn't use src_tokens directly, we need to
# pass the `prefix_tokens` argument instead
if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement():
prefix_tokens = sample["net_input"]["src_tokens"]
if prefix_tokens[:, 0].eq(bos_token).all():
prefix_tokens = prefix_tokens[:, 1:]
return generator.generate(
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
)
def eval_lm_dataloader(
self,
dataset,
max_tokens: Optional[int] = 36000,
batch_size: Optional[int] = None,
max_positions: Optional[int] = None,
num_shards: int = 1,
shard_id: int = 0,
num_workers: int = 1,
data_buffer_size: int = 10,
# ensures that every evaluated token has access to a context of at least
# this size, if possible
context_window: int = 0,
):
if context_window > 0:
dataset = LMContextWindowDataset(
dataset=dataset,
tokens_per_sample=self.args.tokens_per_sample,
context_window=context_window,
pad_idx=self.source_dictionary.pad(),
)
return self.get_batch_iterator(
dataset=dataset,
max_tokens=max_tokens,
max_sentences=batch_size,
max_positions=max_positions,
ignore_invalid_inputs=True,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
data_buffer_size=data_buffer_size,
).next_epoch_itr(shuffle=False)
@property
def source_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.dictionary
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.output_dictionary
|