File size: 16,556 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Implements tracking of constraints for a beam item.
A list of constraints is given as a list of one or more token
sequences, each of length at least one token. For example, for an input sentence
> Die maschinelle Übersetzung ist schwer zu kontrollieren.
We could have the constraints:
* to influence
* hard
There are two implementations:
* OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints.
* UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints.
The difference is that in the first, the constraints are assumed to be
in order; the algorithm will permit zero or more tokens between them.
In the second, the constraints are not ordered, so many orderings will
be explored.
The same sequence can be present any number of times, and will appear
that many times in the output.
"""
from collections import Counter
from typing import List, Optional, Set, Tuple
import torch
class ConstraintState:
def __init__(self):
pass
def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor:
"""Takes a list of list of constraints in tensor form (a list of
tensor constraints for each sentence) and transforms it into a
packed Tensor. For example, here is a batch of size 3 with 3, 0,
and 1 constraints:
[ [ [3 1 2], [3], [4 5 6 7], ]
[],
[ [1 8 9 10 1 4 11 12], ]
]
Its corresponding packed structure is:
[ [ 3 3 1 2 0 3 0 4 5 6 7 0],
[ 0 0 0 0 0 0 0 0 0 0 0 0],
[ 1 1 8 9 10 1 4 11 12 0 0 0] ]
The packed tensor has shape (batch size, maxlen), where
maxlen is defined below. Each row contains concatenated
constraint tokens for that sentence, with 0 appended after
each constraint. The first item in each row is the number
of constraints for that sentence. So maxlen is the maximum
of
(number of constraints) + (sum length of constraints) + 1.
across all sentences in the batch.
"""
# The maximum word length of concatenated constraints for any sentence
max_constraints_len = 1
for sentence_constraints in batch_constraints:
if len(sentence_constraints):
# number of constraints, plus sum of constrain lens, plus a zero after each
constraints_len = (
1
+ sum([c.size(0) for c in sentence_constraints])
+ len(sentence_constraints)
)
max_constraints_len = max(max_constraints_len, constraints_len)
batch_size = len(batch_constraints)
constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long()
for i, sentence_constraints in enumerate(batch_constraints):
constraints_tensor[i, 0] = len(sentence_constraints)
offset = 1
for j, constraint in enumerate(sentence_constraints):
this_len = constraint.size(0)
constraints_tensor[i, offset : offset + this_len] = constraint
offset += this_len + 1
return constraints_tensor.long()
def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]:
"""
Transforms *one row* of a packed constraint tensor (e.g., for one
sentence in the batch) into a list of constraint tensors.
"""
constraint_list = []
num_constraints = constraint_tensor[0]
constraints = constraint_tensor.tolist()
offset = 1
for i in range(num_constraints):
where = constraints.index(0, offset)
constraint_list.append(constraint_tensor[offset:where])
offset = where + 1
return constraint_list
class ConstraintNode:
"""
Represents a node in a trie managing unordered constraints.
"""
def __init__(self, token: int = None, parent=None):
# The token associate with this node (None for the root)
self.token = int(token) if token is not None else None
# The parent (None at the root)
self.parent = parent
# Whether this node is a completed constraint
self.terminal = 0
# List of child nodes
self.children = {}
# The cumulative number of constraints from this point in the
# trie forward
self.num_constraints = 0
@property
def id(self):
return self.token
def __str__(self):
term = self.terminal != 0
return f"[{self.token}].{term}#{self.num_constraints}"
def __getitem__(self, key: int):
return self.children.get(key, None)
def next_tokens(self) -> Set[int]:
"""The set of child labels."""
return set(self.children.keys())
@staticmethod
def create(constraints: List[List[int]]):
root = ConstraintNode()
for sequence in constraints:
root.add_sequence(sequence)
return root
@staticmethod
def print_graph(node: "ConstraintNode"):
if len(node.children) == 0:
return str(node)
else:
s = f"({node}"
for child in node.children.values():
s += " " + ConstraintNode.print_graph(child)
s += ")"
return s
def token_counts(self) -> Counter:
"""Returns a counter of the number of times each token is used
in a constraint.
"""
token_counts = Counter()
kids = list(self.children.values())
while len(kids) > 0:
kid = kids.pop()
token_counts[kid.id] += kid.num_constraints
kids += list(kid.children.values())
return token_counts
def tokens(self) -> Set[int]:
"""Returns the set of tokens in constraints."""
return set(self.token_counts().keys())
def add_sequence(self, sequence: List[int]):
"""Adds a constraint, represented as a list of integers, to
the trie."""
assert len(sequence) > 0
token = int(sequence[0])
if token not in self.children:
self.children[token] = ConstraintNode(token, parent=self)
node = self.children[token]
if len(sequence) == 1:
node.terminal += 1
node.num_constraints += 1
parent = node.parent
while parent is not None:
parent.num_constraints += 1
parent = parent.parent
else:
node.add_sequence(sequence[1:])
class UnorderedConstraintState(ConstraintState):
"""
Records progress through the set of constraints for each item in the beam
using a trie.
"""
def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None):
self.node = node
if copy_from is None:
# The root node
self.root = node
# The set of states in the graph that have been completed
self.completed = Counter()
# The...
self.generated = Counter()
# The list of tokens we need to generate
self.needed_tokens = self.root.tokens()
else:
self.completed = Counter(copy_from.completed)
self.generated = Counter(copy_from.generated)
self.root = copy_from.root
# Mark the node as generated
if self.node != self.root:
self.generated[node] += 1
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
constraint_trie_root = ConstraintNode.create(constraint_list)
return UnorderedConstraintState(constraint_trie_root)
def __str__(self):
gen_str = ",".join([str(node) for node in self.generated])
return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}"
def __copy__(self):
copied_state = UnorderedConstraintState(self.node, copy_from=self)
return copied_state
def copy(self):
return self.__copy__()
@property
def name(self):
if self.node.id is None:
return "ROOT"
else:
return str(self.node.id)
@property
def is_root(self):
return self.node == self.root
@property
def bank(self):
return sum(self.generated.values())
@property
def num_completed(self):
"""The number of constraints (not constraint tokens) that are completed.
In addition to the already-completed states, we need to account for the
current state, which might get marked as completed when another token
is generated.
"""
in_final = self.node.terminal and self.completed[self.node] < self.node.terminal
return sum(self.completed.values()) + in_final
@property
def finished(self):
return self.root.num_constraints - self.num_completed == 0
@property
def token_counts(self):
return self.root.token_counts()
@property
def tokens(self):
return self.root.tokens()
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
if self.node != self.root:
return self.root.next_tokens().union(self.node.next_tokens())
else:
return self.root.next_tokens()
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
next_state = None
child = self.node[token]
if child is not None and self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
def rewind():
"""If we're mid-trie and an "illegal" token is chosen next, we need
to reset our state to the root state. However, along the way, we need
to check whether a prefix of the current trie state represents a state
we could mark as completed.
"""
node = self.node
while node != self.root:
if node.terminal and self.completed[node] < node.terminal:
next_state.completed[node] += 1
return
next_state.generated[node] -= 1
node = node.parent
# Fall off the graph, check the root
if next_state is None and token in self.root.next_tokens():
child = self.root[token]
# We can only traverse this edge if it's not saturated
if self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
else:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
elif next_state is None:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
return next_state
class ConstraintSequence:
def __init__(self, sequences: List[List[int]]):
"""Represents a set of possibly multitoken constraints by
concatenating them and internally recording the end points.
"""
self.sequences = []
self.endpoints = []
self.num_tokens = 0
self.tokens = set()
for sequence in sequences:
for token in sequence:
self.tokens.add(token)
self.num_tokens += len(sequence)
self.endpoints += [False for x in range(len(sequence) - 1)] + [True]
self.sequences += sequence
def __getitem__(self, key: int):
return self.sequences[key]
def __len__(self):
return len(self.sequences)
def __str__(self):
return str(self.sequences)
class OrderedConstraintState(ConstraintState):
"""
Records progress through the set of linear nonbranching constraints with gaps.
"""
def __init__(self, sequence: ConstraintSequence, state: int = -1):
self.sequence = sequence
self.state = state
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
return OrderedConstraintState(ConstraintSequence(constraint_list), -1)
def __str__(self):
return f"{self.state}/{self.bank}x{self.num_completed}"
def __copy__(self):
return OrderedConstraintState(self.sequence, self.state)
def copy(self):
return self.__copy__()
@property
def num_completed(self):
if self.state == -1:
return 0
count = len(
list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1]))
)
return count
@property
def is_root(self):
return self.state == -1
@property
def name(self):
if self.state == -1:
return "ROOT"
else:
return str(self.sequence[self.state])
@property
def bank(self) -> int:
return self.state + 1
@property
def finished(self):
return self.state + 1 == len(self.sequence)
@property
def token_counts(self):
return self.sequence.token_counts()
@property
def tokens(self):
return self.sequence.tokens
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
tokens = set()
if self.state > 0:
tokens.add(self.sequence[0])
if not self.finished:
tokens.add(self.sequence[self.state + 1])
return tokens
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
# print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="")
if self.finished:
# Accept anything
next_state = self.copy()
elif self.sequence[self.state + 1] == token:
# Advance to the next token
next_state = OrderedConstraintState(self.sequence, self.state + 1)
elif self.sequence.endpoints[self.state]:
# Accept anything between constraints (*)
next_state = self.copy()
elif token == self.sequence[0]:
# Start over having generated the first token
next_state = OrderedConstraintState(self.sequence, 0)
else:
# Start over from the root
next_state = OrderedConstraintState(self.sequence, -1)
return next_state
|