File size: 3,904 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
from typing import List, Optional
import torch
from torch import Tensor
from torch.nn import Module
from tha3.nn.common.poser_encoder_decoder_00 import PoserEncoderDecoder00Args
from tha3.nn.common.poser_encoder_decoder_00_separable import PoserEncoderDecoder00Separable
from tha3.nn.image_processing_util import apply_color_change
from tha3.module.module_factory import ModuleFactory
from tha3.nn.nonlinearity_factory import ReLUFactory
from tha3.nn.normalization import InstanceNorm2dFactory
from tha3.nn.util import BlockArgs
class EyebrowDecomposer03Args(PoserEncoderDecoder00Args):
def __init__(self,
image_size: int = 128,
image_channels: int = 4,
start_channels: int = 64,
bottleneck_image_size=16,
num_bottleneck_blocks=6,
max_channels: int = 512,
block_args: Optional[BlockArgs] = None):
super().__init__(
image_size,
image_channels,
image_channels,
0,
start_channels,
bottleneck_image_size,
num_bottleneck_blocks,
max_channels,
block_args)
class EyebrowDecomposer03(Module):
def __init__(self, args: EyebrowDecomposer03Args):
super().__init__()
self.args = args
self.body = PoserEncoderDecoder00Separable(args)
self.background_layer_alpha = self.args.create_alpha_block()
self.background_layer_color_change = self.args.create_color_change_block()
self.eyebrow_layer_alpha = self.args.create_alpha_block()
self.eyebrow_layer_color_change = self.args.create_color_change_block()
def forward(self, image: Tensor, *args) -> List[Tensor]:
feature = self.body(image)[0]
background_layer_alpha = self.background_layer_alpha(feature)
background_layer_color_change = self.background_layer_color_change(feature)
background_layer_1 = apply_color_change(background_layer_alpha, background_layer_color_change, image)
eyebrow_layer_alpha = self.eyebrow_layer_alpha(feature)
eyebrow_layer_color_change = self.eyebrow_layer_color_change(feature)
eyebrow_layer = apply_color_change(eyebrow_layer_alpha, image, eyebrow_layer_color_change)
return [
eyebrow_layer, # 0
eyebrow_layer_alpha, # 1
eyebrow_layer_color_change, # 2
background_layer_1, # 3
background_layer_alpha, # 4
background_layer_color_change, # 5
]
EYEBROW_LAYER_INDEX = 0
EYEBROW_LAYER_ALPHA_INDEX = 1
EYEBROW_LAYER_COLOR_CHANGE_INDEX = 2
BACKGROUND_LAYER_INDEX = 3
BACKGROUND_LAYER_ALPHA_INDEX = 4
BACKGROUND_LAYER_COLOR_CHANGE_INDEX = 5
OUTPUT_LENGTH = 6
class EyebrowDecomposer03Factory(ModuleFactory):
def __init__(self, args: EyebrowDecomposer03Args):
super().__init__()
self.args = args
def create(self) -> Module:
return EyebrowDecomposer03(self.args)
if __name__ == "__main__":
cuda = torch.device('cuda')
args = EyebrowDecomposer03Args(
image_size=128,
image_channels=4,
start_channels=64,
bottleneck_image_size=16,
num_bottleneck_blocks=6,
block_args=BlockArgs(
initialization_method='xavier',
use_spectral_norm=False,
normalization_layer_factory=InstanceNorm2dFactory(),
nonlinearity_factory=ReLUFactory(inplace=True)))
face_morpher = EyebrowDecomposer03(args).to(cuda)
#image = torch.randn(8, 4, 128, 128, device=cuda)
#outputs = face_morpher.forward(image)
#for i in range(len(outputs)):
# print(i, outputs[i].shape)
state_dict = face_morpher.state_dict()
index = 0
for key in state_dict:
print(f"[{index}]", key, state_dict[key].shape)
index += 1
|