|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import logging |
|
import os |
|
import sys |
|
from typing import Any, List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq.data import data_utils |
|
from fairseq.data.fairseq_dataset import FairseqDataset |
|
from fairseq.data.audio.audio_utils import ( |
|
parse_path, |
|
read_from_stored_zip, |
|
) |
|
import io |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_audio(manifest_path, max_keep, min_keep): |
|
n_long, n_short = 0, 0 |
|
names, inds, sizes = [], [], [] |
|
with open(manifest_path) as f: |
|
root = f.readline().strip() |
|
for ind, line in enumerate(f): |
|
items = line.strip().split("\t") |
|
assert len(items) == 2, line |
|
sz = int(items[1]) |
|
if min_keep is not None and sz < min_keep: |
|
n_short += 1 |
|
elif max_keep is not None and sz > max_keep: |
|
n_long += 1 |
|
else: |
|
names.append(items[0]) |
|
inds.append(ind) |
|
sizes.append(sz) |
|
tot = ind + 1 |
|
logger.info( |
|
( |
|
f"max_keep={max_keep}, min_keep={min_keep}, " |
|
f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " |
|
f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" |
|
) |
|
) |
|
return root, names, inds, tot, sizes |
|
|
|
|
|
def load_label(label_path, inds, tot): |
|
with open(label_path) as f: |
|
labels = [line.rstrip() for line in f] |
|
assert ( |
|
len(labels) == tot |
|
), f"number of labels does not match ({len(labels)} != {tot})" |
|
labels = [labels[i] for i in inds] |
|
return labels |
|
|
|
|
|
def load_label_offset(label_path, inds, tot): |
|
with open(label_path) as f: |
|
code_lengths = [len(line.encode("utf-8")) for line in f] |
|
assert ( |
|
len(code_lengths) == tot |
|
), f"number of labels does not match ({len(code_lengths)} != {tot})" |
|
offsets = list(itertools.accumulate([0] + code_lengths)) |
|
offsets = [(offsets[i], offsets[i + 1]) for i in inds] |
|
return offsets |
|
|
|
|
|
def verify_label_lengths( |
|
audio_sizes, |
|
audio_rate, |
|
label_path, |
|
label_rate, |
|
inds, |
|
tot, |
|
tol=0.1, |
|
): |
|
if label_rate < 0: |
|
logger.info(f"{label_path} is sequence label. skipped") |
|
return |
|
|
|
with open(label_path) as f: |
|
lengths = [len(line.rstrip().split()) for line in f] |
|
assert len(lengths) == tot |
|
lengths = [lengths[i] for i in inds] |
|
num_invalid = 0 |
|
for i, ind in enumerate(inds): |
|
dur_from_audio = audio_sizes[i] / audio_rate |
|
dur_from_label = lengths[i] / label_rate |
|
if abs(dur_from_audio - dur_from_label) > tol: |
|
logger.warning( |
|
( |
|
f"audio and label duration differ too much " |
|
f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " |
|
f"in line {ind+1} of {label_path}. Check if `label_rate` " |
|
f"is correctly set (currently {label_rate}). " |
|
f"num. of samples = {audio_sizes[i]}; " |
|
f"label length = {lengths[i]}" |
|
) |
|
) |
|
num_invalid += 1 |
|
if num_invalid > 0: |
|
logger.warning( |
|
f"total {num_invalid} (audio, label) pairs with mismatched lengths" |
|
) |
|
|
|
|
|
class HubertDataset(FairseqDataset): |
|
def __init__( |
|
self, |
|
manifest_path: str, |
|
sample_rate: float, |
|
label_paths: List[str], |
|
label_rates: Union[List[float], float], |
|
pad_list: List[str], |
|
eos_list: List[str], |
|
label_processors: Optional[List[Any]] = None, |
|
max_keep_sample_size: Optional[int] = None, |
|
min_keep_sample_size: Optional[int] = None, |
|
max_sample_size: Optional[int] = None, |
|
shuffle: bool = True, |
|
pad_audio: bool = False, |
|
normalize: bool = False, |
|
store_labels: bool = True, |
|
random_crop: bool = False, |
|
single_target: bool = False, |
|
): |
|
self.audio_root, self.audio_names, inds, tot, self.sizes = load_audio( |
|
manifest_path, max_keep_sample_size, min_keep_sample_size |
|
) |
|
self.sample_rate = sample_rate |
|
self.shuffle = shuffle |
|
self.random_crop = random_crop |
|
|
|
self.num_labels = len(label_paths) |
|
self.pad_list = pad_list |
|
self.eos_list = eos_list |
|
self.label_processors = label_processors |
|
self.single_target = single_target |
|
self.label_rates = ( |
|
[label_rates for _ in range(len(label_paths))] |
|
if isinstance(label_rates, float) |
|
else label_rates |
|
) |
|
self.store_labels = store_labels |
|
if store_labels: |
|
self.label_list = [load_label(p, inds, tot) for p in label_paths] |
|
else: |
|
self.label_paths = label_paths |
|
self.label_offsets_list = [ |
|
load_label_offset(p, inds, tot) for p in label_paths |
|
] |
|
assert label_processors is None or len(label_processors) == self.num_labels |
|
for label_path, label_rate in zip(label_paths, self.label_rates): |
|
verify_label_lengths( |
|
self.sizes, sample_rate, label_path, label_rate, inds, tot |
|
) |
|
|
|
self.max_sample_size = ( |
|
max_sample_size if max_sample_size is not None else sys.maxsize |
|
) |
|
self.pad_audio = pad_audio |
|
self.normalize = normalize |
|
logger.info( |
|
f"pad_audio={pad_audio}, random_crop={random_crop}, " |
|
f"normalize={normalize}, max_sample_size={self.max_sample_size}" |
|
) |
|
|
|
def get_audio(self, index): |
|
import soundfile as sf |
|
|
|
wav_path = os.path.join(self.audio_root, self.audio_names[index]) |
|
_path, slice_ptr = parse_path(wav_path) |
|
if len(slice_ptr) == 0: |
|
wav, cur_sample_rate = sf.read(_path) |
|
else: |
|
assert _path.endswith(".zip") |
|
data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1]) |
|
f = io.BytesIO(data) |
|
wav, cur_sample_rate = sf.read(f) |
|
wav = torch.from_numpy(wav).float() |
|
wav = self.postprocess(wav, cur_sample_rate) |
|
return wav |
|
|
|
def get_label(self, index, label_idx): |
|
if self.store_labels: |
|
label = self.label_list[label_idx][index] |
|
else: |
|
with open(self.label_paths[label_idx]) as f: |
|
offset_s, offset_e = self.label_offsets_list[label_idx][index] |
|
f.seek(offset_s) |
|
label = f.read(offset_e - offset_s) |
|
|
|
if self.label_processors is not None: |
|
label = self.label_processors[label_idx](label) |
|
return label |
|
|
|
def get_labels(self, index): |
|
return [self.get_label(index, i) for i in range(self.num_labels)] |
|
|
|
def __getitem__(self, index): |
|
wav = self.get_audio(index) |
|
labels = self.get_labels(index) |
|
return {"id": index, "source": wav, "label_list": labels} |
|
|
|
def __len__(self): |
|
return len(self.sizes) |
|
|
|
def crop_to_max_size(self, wav, target_size): |
|
size = len(wav) |
|
diff = size - target_size |
|
if diff <= 0: |
|
return wav, 0 |
|
|
|
start, end = 0, target_size |
|
if self.random_crop: |
|
start = np.random.randint(0, diff + 1) |
|
end = size - diff + start |
|
return wav[start:end], start |
|
|
|
def collater(self, samples): |
|
|
|
|
|
samples = [s for s in samples if s["source"] is not None] |
|
if len(samples) == 0: |
|
return {} |
|
|
|
audios = [s["source"] for s in samples] |
|
audio_sizes = [len(s) for s in audios] |
|
if self.pad_audio: |
|
audio_size = min(max(audio_sizes), self.max_sample_size) |
|
else: |
|
audio_size = min(min(audio_sizes), self.max_sample_size) |
|
collated_audios, padding_mask, audio_starts = self.collater_audio( |
|
audios, audio_size |
|
) |
|
|
|
targets_by_label = [ |
|
[s["label_list"][i] for s in samples] for i in range(self.num_labels) |
|
] |
|
targets_list, lengths_list, ntokens_list = self.collater_label( |
|
targets_by_label, audio_size, audio_starts |
|
) |
|
|
|
net_input = {"source": collated_audios, "padding_mask": padding_mask} |
|
batch = { |
|
"id": torch.LongTensor([s["id"] for s in samples]), |
|
"net_input": net_input, |
|
} |
|
|
|
if self.single_target: |
|
batch["target_lengths"] = lengths_list[0] |
|
batch["ntokens"] = ntokens_list[0] |
|
batch["target"] = targets_list[0] |
|
else: |
|
batch["target_lengths_list"] = lengths_list |
|
batch["ntokens_list"] = ntokens_list |
|
batch["target_list"] = targets_list |
|
return batch |
|
|
|
def collater_audio(self, audios, audio_size): |
|
collated_audios = audios[0].new_zeros(len(audios), audio_size) |
|
padding_mask = ( |
|
torch.BoolTensor(collated_audios.shape).fill_(False) |
|
|
|
) |
|
audio_starts = [0 for _ in audios] |
|
for i, audio in enumerate(audios): |
|
diff = len(audio) - audio_size |
|
if diff == 0: |
|
collated_audios[i] = audio |
|
elif diff < 0: |
|
assert self.pad_audio |
|
collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) |
|
padding_mask[i, diff:] = True |
|
else: |
|
collated_audios[i], audio_starts[i] = self.crop_to_max_size( |
|
audio, audio_size |
|
) |
|
return collated_audios, padding_mask, audio_starts |
|
|
|
def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad): |
|
assert label_rate > 0 |
|
s2f = label_rate / self.sample_rate |
|
frm_starts = [int(round(s * s2f)) for s in audio_starts] |
|
frm_size = int(round(audio_size * s2f)) |
|
if not self.pad_audio: |
|
rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] |
|
frm_size = min(frm_size, *rem_size) |
|
targets = [t[s : s + frm_size] for t, s in zip(targets, frm_starts)] |
|
logger.debug(f"audio_starts={audio_starts}") |
|
logger.debug(f"frame_starts={frm_starts}") |
|
logger.debug(f"frame_size={frm_size}") |
|
|
|
lengths = torch.LongTensor([len(t) for t in targets]) |
|
ntokens = lengths.sum().item() |
|
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) |
|
return targets, lengths, ntokens |
|
|
|
def collater_seq_label(self, targets, pad): |
|
lengths = torch.LongTensor([len(t) for t in targets]) |
|
ntokens = lengths.sum().item() |
|
targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) |
|
return targets, lengths, ntokens |
|
|
|
def collater_label(self, targets_by_label, audio_size, audio_starts): |
|
targets_list, lengths_list, ntokens_list = [], [], [] |
|
itr = zip(targets_by_label, self.label_rates, self.pad_list) |
|
for targets, label_rate, pad in itr: |
|
if label_rate == -1.0: |
|
targets, lengths, ntokens = self.collater_seq_label(targets, pad) |
|
else: |
|
targets, lengths, ntokens = self.collater_frm_label( |
|
targets, audio_size, audio_starts, label_rate, pad |
|
) |
|
targets_list.append(targets) |
|
lengths_list.append(lengths) |
|
ntokens_list.append(ntokens) |
|
return targets_list, lengths_list, ntokens_list |
|
|
|
def num_tokens(self, index): |
|
return self.size(index) |
|
|
|
def size(self, index): |
|
if self.pad_audio: |
|
return self.sizes[index] |
|
return min(self.sizes[index], self.max_sample_size) |
|
|
|
def ordered_indices(self): |
|
if self.shuffle: |
|
order = [np.random.permutation(len(self))] |
|
else: |
|
order = [np.arange(len(self))] |
|
|
|
order.append(self.sizes) |
|
return np.lexsort(order)[::-1] |
|
|
|
def postprocess(self, wav, cur_sample_rate): |
|
if wav.dim() == 2: |
|
wav = wav.mean(-1) |
|
assert wav.dim() == 1, wav.dim() |
|
|
|
if cur_sample_rate != self.sample_rate: |
|
raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") |
|
|
|
if self.normalize: |
|
with torch.no_grad(): |
|
wav = F.layer_norm(wav, wav.shape) |
|
return wav |
|
|