|
""" |
|
Byte pair encoding utilities from GPT-2. |
|
|
|
Original source: https://github.com/openai/gpt-2/blob/master/src/encoder.py |
|
Original license: MIT |
|
""" |
|
|
|
import json |
|
from functools import lru_cache |
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
""" |
|
Returns list of utf-8 byte and a corresponding list of unicode strings. |
|
The reversible bpe codes work on unicode strings. |
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. |
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. |
|
This is a signficant percentage of your normal, say, 32K bpe vocab. |
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. |
|
And avoids mapping to whitespace/control characters the bpe code barfs on. |
|
""" |
|
bs = ( |
|
list(range(ord("!"), ord("~") + 1)) |
|
+ list(range(ord("¡"), ord("¬") + 1)) |
|
+ list(range(ord("®"), ord("ÿ") + 1)) |
|
) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
def get_pairs(word): |
|
"""Return set of symbol pairs in a word. |
|
Word is represented as tuple of symbols (symbols being variable-length strings). |
|
""" |
|
pairs = set() |
|
prev_char = word[0] |
|
for char in word[1:]: |
|
pairs.add((prev_char, char)) |
|
prev_char = char |
|
return pairs |
|
|
|
|
|
class Encoder: |
|
def __init__(self, encoder, bpe_merges, errors="replace"): |
|
self.encoder = encoder |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.errors = errors |
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) |
|
self.cache = {} |
|
|
|
try: |
|
import regex as re |
|
|
|
self.re = re |
|
except ImportError: |
|
raise ImportError("Please install regex with: pip install regex") |
|
|
|
|
|
self.pat = self.re.compile( |
|
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" |
|
) |
|
|
|
def bpe(self, token): |
|
if token in self.cache: |
|
return self.cache[token] |
|
word = tuple(token) |
|
pairs = get_pairs(word) |
|
|
|
if not pairs: |
|
return token |
|
|
|
while True: |
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) |
|
if bigram not in self.bpe_ranks: |
|
break |
|
first, second = bigram |
|
new_word = [] |
|
i = 0 |
|
while i < len(word): |
|
try: |
|
j = word.index(first, i) |
|
new_word.extend(word[i:j]) |
|
i = j |
|
except: |
|
new_word.extend(word[i:]) |
|
break |
|
|
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: |
|
new_word.append(first + second) |
|
i += 2 |
|
else: |
|
new_word.append(word[i]) |
|
i += 1 |
|
new_word = tuple(new_word) |
|
word = new_word |
|
if len(word) == 1: |
|
break |
|
else: |
|
pairs = get_pairs(word) |
|
word = " ".join(word) |
|
self.cache[token] = word |
|
return word |
|
|
|
def encode(self, text): |
|
bpe_tokens = [] |
|
for token in self.re.findall(self.pat, text): |
|
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) |
|
bpe_tokens.extend( |
|
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") |
|
) |
|
return bpe_tokens |
|
|
|
def decode(self, tokens): |
|
text = "".join([self.decoder.get(token, token) for token in tokens]) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode( |
|
"utf-8", errors=self.errors |
|
) |
|
return text |
|
|
|
|
|
def get_encoder(encoder_json_path, vocab_bpe_path): |
|
with open(encoder_json_path, "r") as f: |
|
encoder = json.load(f) |
|
with open(vocab_bpe_path, "r", encoding="utf-8") as f: |
|
bpe_data = f.read() |
|
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]] |
|
return Encoder( |
|
encoder=encoder, |
|
bpe_merges=bpe_merges, |
|
) |
|
|