TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from typing import Dict
from fairseq.data.monolingual_dataset import MonolingualDataset
from . import FairseqDataset
class LMContextWindowDataset(FairseqDataset):
"""
Wraps a MonolingualDataset and provides more context for evaluation.
Each item in the new dataset will have a maximum size of
``tokens_per_sample + context_window``.
Args:
dataset: dataset to wrap
tokens_per_sample (int): the max number of tokens in each dataset item
context_window (int): the number of accumulated tokens to add to each
dataset item
pad_idx (int): padding symbol
"""
def __init__(
self,
dataset: MonolingualDataset,
tokens_per_sample: int,
context_window: int,
pad_idx: int,
):
assert context_window > 0
self.dataset = dataset
self.tokens_per_sample = tokens_per_sample
self.context_window = context_window
self.pad_idx = pad_idx
self.prev_tokens = np.empty([0])
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
def collater(self, samples) -> Dict:
sample = self.dataset.collater(samples)
pad = self.pad_idx
max_sample_len = self.tokens_per_sample + self.context_window
bsz, tsz = sample["net_input"]["src_tokens"].shape
start_idxs = [0] * bsz
toks = sample["net_input"]["src_tokens"]
lengths = sample["net_input"]["src_lengths"]
tgt = sample["target"]
new_toks = np.empty([bsz, tsz + self.context_window], dtype=np.int64)
new_tgt = np.full([bsz, tsz + self.context_window], pad, dtype=np.int64)
sample_lens = toks.ne(pad).long().sum(dim=1).cpu()
for i in range(bsz):
sample_len = sample_lens[i]
extra = len(self.prev_tokens) + sample_len - max_sample_len
if extra > 0:
self.prev_tokens = self.prev_tokens[extra:]
pads = np.full(self.context_window - len(self.prev_tokens), pad)
new_toks[i] = np.concatenate([self.prev_tokens, toks[i].numpy(), pads])
new_tgt[
i, len(self.prev_tokens) : len(self.prev_tokens) + len(tgt[i])
] = tgt[i]
start_idxs[i] = len(self.prev_tokens)
lengths[i] += len(self.prev_tokens)
self.prev_tokens = new_toks[i][new_toks[i] != pad][-self.context_window :]
sample["net_input"]["src_tokens"] = torch.from_numpy(new_toks)
sample["target"] = torch.from_numpy(new_tgt)
sample["start_indices"] = start_idxs
return sample
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
return self.dataset.size(index)
def ordered_indices(self):
# NOTE we don't shuffle the data to retain access to the previous dataset elements
return np.arange(len(self.dataset))
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.dataset.prefetch(indices)