TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
import torch
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
def _flatten(dico, prefix=None):
"""Flatten a nested dictionary."""
new_dico = OrderedDict()
if isinstance(dico, dict):
prefix = prefix + "." if prefix is not None else ""
for k, v in dico.items():
if v is None:
continue
new_dico.update(_flatten(v, prefix + k))
elif isinstance(dico, list):
for i, v in enumerate(dico):
new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]"))
else:
new_dico = OrderedDict({prefix: dico})
return new_dico
def _unflatten(dico):
"""Unflatten a flattened dictionary into a nested dictionary."""
new_dico = OrderedDict()
for full_k, v in dico.items():
full_k = full_k.split(".")
node = new_dico
for k in full_k[:-1]:
if k.startswith("[") and k.endswith("]"):
k = int(k[1:-1])
if k not in node:
node[k] = OrderedDict()
node = node[k]
node[full_k[-1]] = v
return new_dico
class NestedDictionaryDataset(FairseqDataset):
def __init__(self, defn, sizes=None):
super().__init__()
self.defn = _flatten(defn)
self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes
first = None
for v in self.defn.values():
if not isinstance(
v,
(
FairseqDataset,
torch.utils.data.Dataset,
),
):
raise ValueError("Expected Dataset but found: {}".format(v.__class__))
first = first or v
if len(v) > 0:
assert len(v) == len(first), "dataset lengths must match"
self._len = len(first)
def __getitem__(self, index):
return OrderedDict((k, ds[index]) for k, ds in self.defn.items())
def __len__(self):
return self._len
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
if len(samples) == 0:
return {}
sample = OrderedDict()
for k, ds in self.defn.items():
try:
sample[k] = ds.collater([s[k] for s in samples])
except NotImplementedError:
sample[k] = default_collate([s[k] for s in samples])
return _unflatten(sample)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return max(s[index] for s in self.sizes)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if len(self.sizes) == 1:
return self.sizes[0][index]
else:
return (s[index] for s in self.sizes)
@property
def supports_prefetch(self):
"""Whether this dataset supports prefetching."""
return any(ds.supports_prefetch for ds in self.defn.values())
def prefetch(self, indices):
"""Prefetch the data required for this epoch."""
for ds in self.defn.values():
if getattr(ds, "supports_prefetch", False):
ds.prefetch(indices)
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(ds.can_reuse_epoch_itr_across_epochs for ds in self.defn.values())
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.defn.values():
ds.set_epoch(epoch)