TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from collections import OrderedDict
from typing import Dict, Sequence
import numpy as np
from . import FairseqDataset, LanguagePairDataset
logger = logging.getLogger(__name__)
class RoundRobinZipDatasets(FairseqDataset):
"""Zip multiple :class:`~fairseq.data.FairseqDataset` instances together.
Shorter datasets are repeated in a round-robin fashion to match the length
of the longest one.
Args:
datasets (Dict[~fairseq.data.FairseqDataset]): a dictionary of
:class:`~fairseq.data.FairseqDataset` instances.
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
"""
def __init__(self, datasets, eval_key=None):
super().__init__()
if isinstance(datasets, dict):
datasets = OrderedDict(datasets)
assert isinstance(datasets, OrderedDict)
assert datasets, "Can't make a RoundRobinZipDatasets out of nothing"
for dataset in datasets.values():
assert isinstance(dataset, FairseqDataset)
self.datasets = datasets
self.eval_key = eval_key
self.longest_dataset_key = max(datasets, key=lambda k: len(datasets[k]))
self.longest_dataset = datasets[self.longest_dataset_key]
self._ordered_indices: Dict[str, Sequence[int]] = None
def _map_index(self, key, index):
assert (
self._ordered_indices is not None
), "Must call RoundRobinZipDatasets.ordered_indices() first"
o = self._ordered_indices[key]
return o[index % len(o)]
def __getitem__(self, index):
if self.eval_key is None:
return OrderedDict(
[
(key, dataset[self._map_index(key, index)])
for key, dataset in self.datasets.items()
]
)
else:
# at evaluation time it's useful to pass-through batches from a single key
return self.datasets[self.eval_key][self._map_index(self.eval_key, index)]
def __len__(self):
if self._ordered_indices is not None:
return len(self._ordered_indices[self.longest_dataset_key])
return len(self.longest_dataset)
def collater(self, samples):
"""Merge a list of samples to form a mini-batch."""
if len(samples) == 0:
return None
if self.eval_key is None:
return OrderedDict(
[
(key, dataset.collater([sample[key] for sample in samples]))
for key, dataset in self.datasets.items()
]
)
else:
# at evaluation time it's useful to pass-through batches from a single key
return self.datasets[self.eval_key].collater(samples)
def num_tokens(self, index):
"""Return an example's length (number of tokens), used for batching."""
# TODO make it configurable whether to use max() or sum() here
return max(
dataset.num_tokens(self._map_index(key, index))
for key, dataset in self.datasets.items()
)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return {
key: dataset.size(self._map_index(key, index))
for key, dataset in self.datasets.items()
}
def ordered_indices(self):
"""Ordered indices for batching."""
if self._ordered_indices is None:
# Call the underlying dataset's ordered_indices() here, so that we
# get the same random ordering as we would have from using the
# underlying sub-datasets directly.
self._ordered_indices = OrderedDict(
[
(key, dataset.ordered_indices())
for key, dataset in self.datasets.items()
]
)
return np.arange(len(self))
def filter_indices_by_size(self, indices, max_positions=None):
"""
Filter each sub-dataset independently, then update the round robin to work
on the filtered sub-datasets.
"""
def _deep_until_language_pair(dataset):
if isinstance(dataset, LanguagePairDataset):
return dataset
if hasattr(dataset, "tgt_dataset"):
return _deep_until_language_pair(dataset.tgt_dataset)
if hasattr(dataset, "dataset"):
return _deep_until_language_pair(dataset.dataset)
raise Exception(f"Don't know how to unwrap this dataset: {dataset}")
if not isinstance(max_positions, dict):
max_positions = {k: max_positions for k in self.datasets.keys()}
ignored_some = False
for key, dataset in self.datasets.items():
dataset = _deep_until_language_pair(dataset)
self._ordered_indices[key], ignored = dataset.filter_indices_by_size(
self._ordered_indices[key], max_positions[key]
)
if len(ignored) > 0:
ignored_some = True
logger.warning(
f"{len(ignored)} samples from {key} have invalid sizes and will be skipped, "
f"max_positions={max_positions[key]}, first few sample ids={ignored[:10]}"
)
# Since we are modifying in place the _ordered_indices,
# it's not possible anymore to return valid ignored indices.
# Hopefully the extra debug information print above should be enough to debug.
# Ideally we would receive ignore_invalid_inputs so that we could have
# a proper error message.
return (np.arange(len(self)), [0] if ignored_some else [])
@property
def supports_prefetch(self):
return all(
getattr(dataset, "supports_prefetch", False)
for dataset in self.datasets.values()
)
def prefetch(self, indices):
for key, dataset in self.datasets.items():
dataset.prefetch([self._map_index(key, index) for index in indices])