|
|
|
|
|
|
|
|
|
|
|
import io |
|
import logging |
|
import os |
|
import pickle |
|
import random |
|
import socket |
|
import struct |
|
import subprocess |
|
import warnings |
|
from argparse import Namespace |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Mapping, Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from fairseq.dataclass.configs import DistributedTrainingConfig, FairseqConfig |
|
from omegaconf import open_dict |
|
|
|
try: |
|
import torch_xla.core.xla_model as xm |
|
except ImportError: |
|
xm = None |
|
|
|
|
|
|
|
|
|
_USE_MEGATRON = False |
|
|
|
|
|
_USE_XLA = False |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def is_master(cfg: DistributedTrainingConfig): |
|
return cfg.distributed_rank == 0 |
|
|
|
|
|
def infer_init_method(cfg: DistributedTrainingConfig, force_distributed=False): |
|
if cfg.distributed_init_method is not None or cfg.tpu: |
|
return |
|
|
|
num_pipelines_per_node = None |
|
if cfg.pipeline_model_parallel: |
|
num_pipeline_devices, num_pipelines_per_node = _pipeline_parallel_pre_init(cfg) |
|
|
|
if all( |
|
key in os.environ |
|
for key in ["MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK"] |
|
): |
|
|
|
_infer_torch_distributed_launch_init(cfg) |
|
elif cfg.distributed_port > 0: |
|
|
|
_infer_slurm_init(cfg, num_pipelines_per_node) |
|
elif cfg.distributed_world_size > 1 or force_distributed: |
|
|
|
_infer_single_node_init(cfg) |
|
|
|
if cfg.pipeline_model_parallel: |
|
_pipeline_parallel_post_init(cfg, num_pipeline_devices, num_pipelines_per_node) |
|
elif not cfg.distributed_no_spawn: |
|
with open_dict(cfg): |
|
cfg.distributed_num_procs = min( |
|
torch.cuda.device_count(), cfg.distributed_world_size |
|
) |
|
|
|
|
|
def _infer_torch_distributed_launch_init(cfg: DistributedTrainingConfig): |
|
cfg.distributed_init_method = "env://" |
|
cfg.distributed_world_size = int(os.environ["WORLD_SIZE"]) |
|
cfg.distributed_rank = int(os.environ["RANK"]) |
|
|
|
cfg.distributed_no_spawn = True |
|
|
|
|
|
def _infer_slurm_init(cfg: DistributedTrainingConfig, num_pipelines_per_node): |
|
node_list = os.environ.get("SLURM_STEP_NODELIST") |
|
if node_list is None: |
|
node_list = os.environ.get("SLURM_JOB_NODELIST") |
|
if node_list is not None: |
|
try: |
|
hostnames = subprocess.check_output( |
|
["scontrol", "show", "hostnames", node_list] |
|
) |
|
cfg.distributed_init_method = "tcp://{host}:{port}".format( |
|
host=hostnames.split()[0].decode("utf-8"), |
|
port=cfg.distributed_port, |
|
) |
|
nnodes = int(os.environ.get("SLURM_NNODES")) |
|
ntasks_per_node = os.environ.get("SLURM_NTASKS_PER_NODE") |
|
if ntasks_per_node is not None: |
|
ntasks_per_node = int(ntasks_per_node) |
|
else: |
|
ntasks = int(os.environ.get("SLURM_NTASKS")) |
|
nnodes = int(os.environ.get("SLURM_NNODES")) |
|
assert ntasks % nnodes == 0 |
|
ntasks_per_node = int(ntasks / nnodes) |
|
if ntasks_per_node == 1: |
|
gpus_per_node = torch.cuda.device_count() |
|
node_id = int(os.environ.get("SLURM_NODEID")) |
|
cfg.distributed_rank = node_id * gpus_per_node |
|
cfg.distributed_world_size = nnodes * gpus_per_node |
|
elif cfg.pipeline_model_parallel: |
|
assert ntasks_per_node == num_pipelines_per_node, ( |
|
"SLURM --ntasks-per-node must match number of pipelines per " |
|
"node (={})".format(num_pipelines_per_node) |
|
) |
|
cfg.distributed_no_spawn = True |
|
|
|
|
|
|
|
node_id = int(os.environ.get("SLURM_NODEID")) |
|
local_id = int(os.environ.get("SLURM_LOCALID")) |
|
cfg.distributed_rank = node_id * num_pipelines_per_node + local_id |
|
|
|
|
|
cfg.device_id = local_id |
|
|
|
|
|
cfg.distributed_world_size = nnodes * num_pipelines_per_node |
|
else: |
|
assert ntasks_per_node == cfg.distributed_world_size // nnodes |
|
cfg.distributed_no_spawn = True |
|
cfg.distributed_rank = int(os.environ.get("SLURM_PROCID")) |
|
cfg.device_id = int(os.environ.get("SLURM_LOCALID")) |
|
except subprocess.CalledProcessError as e: |
|
raise e |
|
except FileNotFoundError: |
|
pass |
|
|
|
|
|
def _infer_single_node_init(cfg: DistributedTrainingConfig): |
|
assert ( |
|
cfg.distributed_world_size <= torch.cuda.device_count() |
|
), f"world size is {cfg.distributed_world_size} but have {torch.cuda.device_count()} available devices" |
|
port = random.randint(10000, 20000) |
|
cfg.distributed_init_method = "tcp://localhost:{port}".format(port=port) |
|
|
|
|
|
def _pipeline_parallel_pre_init(cfg: DistributedTrainingConfig): |
|
from fairseq import utils |
|
|
|
balance_exists = ( |
|
cfg.pipeline_balance is not None |
|
or cfg.pipeline_encoder_balance is not None |
|
or cfg.pipeline_decoder_balance is not None |
|
) |
|
devices_exist = ( |
|
cfg.pipeline_devices is not None |
|
or cfg.pipeline_encoder_devices is not None |
|
or cfg.pipeline_decoder_devices is not None |
|
) |
|
if not balance_exists: |
|
raise ValueError( |
|
"--pipeline-balance is currently required for pipeline model parallelism" |
|
) |
|
if not devices_exist: |
|
raise ValueError( |
|
"--pipeline-devices is currently required for pipeline model parallelism" |
|
) |
|
|
|
cfg.pipeline_balance = utils.eval_str_list(cfg.pipeline_balance, type=int) |
|
if cfg.pipeline_devices is not None: |
|
cfg.pipeline_devices = utils.eval_str_list(cfg.pipeline_devices, type=int) |
|
num_pipeline_devices = len(set(cfg.pipeline_devices)) |
|
else: |
|
cfg.pipeline_encoder_devices = utils.eval_str_list( |
|
cfg.pipeline_encoder_devices, type=int |
|
) |
|
cfg.pipeline_decoder_devices = utils.eval_str_list( |
|
cfg.pipeline_decoder_devices, type=int |
|
) |
|
num_pipeline_devices = len( |
|
set(cfg.pipeline_encoder_devices + cfg.pipeline_decoder_devices) |
|
) |
|
gpus_per_node = torch.cuda.device_count() |
|
assert ( |
|
gpus_per_node >= num_pipeline_devices |
|
and gpus_per_node % num_pipeline_devices == 0 |
|
), ( |
|
"the number of unique device IDs in --pipeline-devices must evenly divide " |
|
"the number of GPUs per node (multi-node pipelining is not yet supported)" |
|
) |
|
num_pipelines_per_node = gpus_per_node // num_pipeline_devices |
|
return num_pipeline_devices, num_pipelines_per_node |
|
|
|
|
|
def _pipeline_parallel_post_init( |
|
cfg: DistributedTrainingConfig, num_pipeline_devices, num_pipelines_per_node |
|
): |
|
if not cfg.distributed_no_spawn: |
|
|
|
|
|
|
|
assert cfg.distributed_world_size % num_pipeline_devices == 0 |
|
cfg.distributed_world_size = cfg.distributed_world_size // num_pipeline_devices |
|
|
|
|
|
|
|
gpus_per_node = torch.cuda.device_count() |
|
assert cfg.distributed_rank % gpus_per_node == 0 |
|
assert cfg.distributed_rank % num_pipeline_devices == 0 |
|
|
|
with open_dict(cfg): |
|
cfg.distributed_rank = cfg.distributed_rank // num_pipeline_devices |
|
|
|
cfg.distributed_num_procs = num_pipelines_per_node |
|
|
|
|
|
|
|
cfg.device_id *= num_pipeline_devices |
|
|
|
if cfg.device_id > 0: |
|
|
|
|
|
logger.debug( |
|
"setting CUDA device={} on rank {}".format( |
|
cfg.device_id, cfg.distributed_rank |
|
) |
|
) |
|
torch.cuda.set_device(cfg.device_id) |
|
with open_dict(cfg): |
|
cfg.pipeline_devices = [cfg.device_id + d for d in cfg.pipeline_devices] |
|
logger.info( |
|
"setting pipeline_devices={} on rank {}".format( |
|
cfg.pipeline_devices, cfg.distributed_rank |
|
) |
|
) |
|
|
|
|
|
def distributed_init(cfg: FairseqConfig): |
|
if isinstance(cfg, Namespace): |
|
from fairseq.dataclass.utils import convert_namespace_to_omegaconf |
|
|
|
cfg = convert_namespace_to_omegaconf(cfg) |
|
|
|
if not cfg.common.tpu: |
|
if torch.distributed.is_available() and torch.distributed.is_initialized(): |
|
warnings.warn( |
|
"Distributed is already initialized, cannot initialize twice!" |
|
) |
|
else: |
|
logger.info( |
|
"distributed init (rank {}): {}".format( |
|
cfg.distributed_training.distributed_rank, |
|
cfg.distributed_training.distributed_init_method, |
|
) |
|
) |
|
dist.init_process_group( |
|
backend=cfg.distributed_training.distributed_backend, |
|
init_method=cfg.distributed_training.distributed_init_method, |
|
world_size=cfg.distributed_training.distributed_world_size, |
|
rank=cfg.distributed_training.distributed_rank, |
|
) |
|
logger.info( |
|
"initialized host {} as rank {}".format( |
|
socket.gethostname(), |
|
cfg.distributed_training.distributed_rank, |
|
) |
|
) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
dist.all_reduce(torch.zeros(1).cuda()) |
|
|
|
cfg.distributed_training.distributed_rank = torch.distributed.get_rank() |
|
else: |
|
assert xm.xrt_world_size() == cfg.distributed_training.distributed_world_size |
|
global _USE_XLA |
|
_USE_XLA = True |
|
cfg.distributed_training.device_id = xm.get_local_ordinal() |
|
cfg.distributed_training.distributed_rank = xm.get_ordinal() |
|
xm.rendezvous("distributed_init") |
|
|
|
if is_master(cfg.distributed_training): |
|
logging.getLogger().setLevel(logging.INFO) |
|
else: |
|
logging.getLogger().setLevel(logging.WARNING) |
|
|
|
if cfg.common.model_parallel_size > 1: |
|
try: |
|
from fairseq.model_parallel.megatron.mpu import ( |
|
initialize_model_parallel, |
|
model_parallel_cuda_manual_seed, |
|
) |
|
except ImportError: |
|
raise ImportError( |
|
"\n\nPlease install the megatron submodule:" |
|
"\n\n git submodule update --init " |
|
"fairseq/model_parallel/megatron" |
|
) |
|
global _USE_MEGATRON |
|
_USE_MEGATRON = True |
|
initialize_model_parallel(cfg.common.model_parallel_size) |
|
model_parallel_cuda_manual_seed(cfg.common.seed) |
|
model_part_number = get_model_parallel_rank() |
|
cfg.checkpoint.checkpoint_suffix += "-model_part-{0}".format(model_part_number) |
|
|
|
if hasattr(cfg, "model") and getattr(cfg.model, "base_layers", 0) > 0: |
|
cfg.checkpoint.checkpoint_suffix = ( |
|
f"-rank-{cfg.distributed_training.distributed_rank}" |
|
) |
|
|
|
return cfg.distributed_training.distributed_rank |
|
|
|
|
|
def distributed_main(i, main, cfg: FairseqConfig, kwargs): |
|
cfg.distributed_training.device_id = i |
|
if torch.cuda.is_available() and not cfg.common.cpu and not cfg.common.tpu: |
|
torch.cuda.set_device(cfg.distributed_training.device_id) |
|
if cfg.distributed_training.distributed_rank is None: |
|
cfg.distributed_training.distributed_rank = kwargs.pop("start_rank", 0) + i |
|
|
|
cfg.distributed_training.distributed_rank = distributed_init(cfg) |
|
|
|
after_distributed_init_fn = kwargs.pop("after_distributed_init_fn", None) |
|
if after_distributed_init_fn: |
|
cfg = after_distributed_init_fn(cfg) |
|
|
|
main(cfg, **kwargs) |
|
|
|
if torch.distributed.is_initialized(): |
|
torch.distributed.barrier(get_global_group()) |
|
|
|
|
|
def call_main(cfg: FairseqConfig, main, **kwargs): |
|
if cfg.distributed_training.distributed_init_method is None: |
|
infer_init_method(cfg.distributed_training) |
|
|
|
if cfg.distributed_training.distributed_init_method is not None: |
|
|
|
if not cfg.distributed_training.distributed_no_spawn: |
|
start_rank = cfg.distributed_training.distributed_rank |
|
cfg.distributed_training.distributed_rank = None |
|
kwargs["start_rank"] = start_rank |
|
torch.multiprocessing.spawn( |
|
fn=distributed_main, |
|
args=(main, cfg, kwargs), |
|
nprocs=min( |
|
torch.cuda.device_count(), |
|
cfg.distributed_training.distributed_world_size, |
|
), |
|
join=True, |
|
) |
|
else: |
|
distributed_main(cfg.distributed_training.device_id, main, cfg, kwargs) |
|
elif cfg.common.tpu and cfg.distributed_training.distributed_world_size > 1: |
|
import torch_xla.distributed.xla_multiprocessing as xmp |
|
|
|
torch.multiprocessing.set_sharing_strategy("file_system") |
|
xmp.spawn( |
|
fn=distributed_main, |
|
args=(main, cfg, kwargs), |
|
|
|
|
|
|
|
nprocs=min(cfg.distributed_training.distributed_world_size, 8), |
|
) |
|
else: |
|
|
|
main(cfg, **kwargs) |
|
|
|
|
|
def use_xla(): |
|
global _USE_XLA |
|
return _USE_XLA |
|
|
|
|
|
def new_groups(grouped_ranks: List[List[int]]): |
|
if use_xla(): |
|
return ("tpu", grouped_ranks) |
|
else: |
|
groups = [dist.new_group(g) for g in grouped_ranks] |
|
my_group_idx = _find_my_group_index(grouped_ranks) |
|
return groups[my_group_idx] |
|
|
|
|
|
def _find_my_group_index(grouped_ranks): |
|
my_rank = get_global_rank() |
|
for i, group in enumerate(grouped_ranks): |
|
if my_rank in group: |
|
return i |
|
raise RuntimeError |
|
|
|
|
|
def _find_my_group(grouped_ranks): |
|
index = _find_my_group_index(grouped_ranks) |
|
return grouped_ranks[index] |
|
|
|
|
|
def get_rank(group): |
|
if use_xla(): |
|
assert group[0] == "tpu" |
|
my_group = _find_my_group(group[1]) |
|
return my_group.index(get_global_rank()) |
|
else: |
|
return dist.get_rank(group=group) |
|
|
|
|
|
def get_world_size(group): |
|
if use_xla(): |
|
assert group[0] == "tpu" |
|
my_group = _find_my_group(group[1]) |
|
return len(my_group) |
|
elif torch.distributed.is_initialized(): |
|
return dist.get_world_size(group=group) |
|
else: |
|
return 1 |
|
|
|
|
|
def get_global_group(): |
|
if use_xla(): |
|
return new_groups([list(range(get_global_world_size()))]) |
|
elif torch.distributed.is_initialized(): |
|
if not hasattr(get_global_group, "_global_group"): |
|
|
|
|
|
get_global_group._global_group = dist.new_group() |
|
return get_global_group._global_group |
|
else: |
|
return None |
|
|
|
|
|
def get_global_rank(): |
|
if use_xla(): |
|
return xm.get_ordinal() |
|
elif torch.distributed.is_initialized(): |
|
return torch.distributed.get_rank() |
|
else: |
|
return 0 |
|
|
|
|
|
def get_global_world_size(): |
|
if use_xla(): |
|
return xm.xrt_world_size() |
|
elif torch.distributed.is_initialized(): |
|
return torch.distributed.get_world_size() |
|
else: |
|
return 1 |
|
|
|
|
|
def get_data_parallel_group(): |
|
"""Get the data parallel group the caller rank belongs to.""" |
|
global _USE_MEGATRON |
|
if _USE_MEGATRON: |
|
from fairseq.model_parallel.megatron import mpu |
|
|
|
return mpu.get_data_parallel_group() |
|
else: |
|
return get_global_group() |
|
|
|
|
|
def get_data_parallel_rank(): |
|
"""Return my rank for the data parallel group.""" |
|
return get_rank(get_data_parallel_group()) |
|
|
|
|
|
def get_data_parallel_world_size(): |
|
"""Return world size for the data parallel group.""" |
|
return get_world_size(get_data_parallel_group()) |
|
|
|
|
|
def get_model_parallel_group(): |
|
global _USE_MEGATRON |
|
if _USE_MEGATRON: |
|
from fairseq.model_parallel.megatron import mpu |
|
|
|
return mpu.get_model_parallel_group() |
|
else: |
|
return None |
|
|
|
|
|
def get_model_parallel_rank(): |
|
"""Return my rank for the model parallel group.""" |
|
return get_rank(get_model_parallel_group()) |
|
|
|
|
|
def get_model_parallel_world_size(): |
|
"""Return world size for the model parallel group.""" |
|
return get_world_size(get_model_parallel_group()) |
|
|
|
|
|
def all_reduce(tensor, group, op="sum"): |
|
if use_xla(): |
|
assert isinstance(group, tuple) and group[0] == "tpu" |
|
tensor = [tensor] |
|
return xm.all_reduce(op, tensor, groups=group[1])[0] |
|
else: |
|
if op == "sum": |
|
op = dist.ReduceOp.SUM |
|
elif op == "max": |
|
op = dist.ReduceOp.MAX |
|
else: |
|
raise NotImplementedError |
|
dist.all_reduce(tensor, op=op, group=group) |
|
return tensor |
|
|
|
|
|
def broadcast(tensor, src, group): |
|
if use_xla(): |
|
|
|
if get_rank(group) != src: |
|
tensor.zero_() |
|
all_reduce(tensor, group) |
|
else: |
|
dist.broadcast(tensor, src=src, group=group) |
|
|
|
|
|
def all_to_all(tensor, group): |
|
"""Perform an all-to-all operation on a 1D Tensor.""" |
|
assert tensor.dim() == 1 |
|
split_count = get_world_size(group=group) |
|
assert tensor.numel() % split_count == 0 |
|
if use_xla(): |
|
assert isinstance(group, tuple) and group[0] == "tpu" |
|
return xm.all_to_all( |
|
tensor, |
|
split_dimension=0, |
|
concat_dimension=0, |
|
split_count=split_count, |
|
groups=group[1], |
|
) |
|
else: |
|
output = torch.zeros_like(tensor) |
|
dist.all_to_all_single(output, tensor, group=group) |
|
return output |
|
|
|
|
|
def all_gather(tensor, group, return_tensor=False): |
|
"""Perform an all-gather operation.""" |
|
if use_xla(): |
|
result = xm.all_gather(tensor, groups=group[1]) |
|
world_size = get_world_size(group=group) |
|
result = result.view(world_size, *tensor.size()) |
|
if return_tensor: |
|
return result |
|
else: |
|
return [result[i] for i in range(world_size)] |
|
else: |
|
world_size = get_world_size(group=group) |
|
rank = get_rank(group=group) |
|
tensor_list = [ |
|
tensor if i == rank else torch.empty_like(tensor) for i in range(world_size) |
|
] |
|
dist.all_gather(tensor_list, tensor, group=group) |
|
if return_tensor: |
|
return torch.stack(tensor_list, dim=0) |
|
else: |
|
return tensor_list |
|
|
|
|
|
def all_gather_list(data, group=None, max_size=16384): |
|
"""Gathers arbitrary data from all nodes into a list. |
|
|
|
Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python |
|
data. Note that *data* must be picklable and any CUDA tensors will be moved |
|
to CPU and returned on CPU as well. |
|
|
|
Args: |
|
data (Any): data from the local worker to be gathered on other workers |
|
group: group of the collective |
|
max_size (int, optional): maximum size of the data to be gathered |
|
across workers |
|
""" |
|
from fairseq import utils |
|
|
|
if group is None: |
|
group = get_global_group() |
|
rank = get_rank(group=group) |
|
world_size = get_world_size(group=group) |
|
|
|
buffer_size = max_size * world_size |
|
if ( |
|
not hasattr(all_gather_list, "_buffer") |
|
or all_gather_list._buffer.numel() < buffer_size |
|
): |
|
all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size) |
|
all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory() |
|
buffer = all_gather_list._buffer |
|
buffer.zero_() |
|
cpu_buffer = all_gather_list._cpu_buffer |
|
|
|
data = utils.move_to_cpu(data) |
|
enc = pickle.dumps(data) |
|
enc_size = len(enc) |
|
header_size = 4 |
|
size = header_size + enc_size |
|
if size > max_size: |
|
raise ValueError( |
|
"encoded data size ({}) exceeds max_size ({})".format(size, max_size) |
|
) |
|
|
|
header = struct.pack(">I", enc_size) |
|
cpu_buffer[:size] = torch.ByteTensor(list(header + enc)) |
|
start = rank * max_size |
|
buffer[start : start + size].copy_(cpu_buffer[:size]) |
|
|
|
all_reduce(buffer, group=group) |
|
|
|
buffer = buffer.cpu() |
|
try: |
|
result = [] |
|
for i in range(world_size): |
|
out_buffer = buffer[i * max_size : (i + 1) * max_size] |
|
(enc_size,) = struct.unpack(">I", bytes(out_buffer[:header_size].tolist())) |
|
if enc_size > 0: |
|
result.append( |
|
pickle.loads( |
|
bytes(out_buffer[header_size : header_size + enc_size].tolist()) |
|
) |
|
) |
|
return result |
|
except pickle.UnpicklingError: |
|
raise Exception( |
|
"Unable to unpickle data from other workers. all_gather_list requires all " |
|
"workers to enter the function together, so this error usually indicates " |
|
"that the workers have fallen out of sync somehow. Workers can fall out of " |
|
"sync if one of them runs out of memory, or if there are other conditions " |
|
"in your training script that can cause one worker to finish an epoch " |
|
"while other workers are still iterating over their portions of the data. " |
|
"Try rerunning with --ddp-backend=legacy_ddp and see if that helps." |
|
) |
|
|
|
|
|
def all_reduce_dict(data: Mapping[str, Any], device, group) -> Dict[str, Any]: |
|
""" |
|
AllReduce a dictionary of values across workers. We separately |
|
reduce items that are already on the device and items on CPU for |
|
better performance. |
|
|
|
Args: |
|
data (Mapping[str, Any]): dictionary of data to all-reduce, but |
|
cannot be a nested dictionary |
|
device (torch.device): device for the reduction |
|
group: group of the collective |
|
""" |
|
data_keys = list(data.keys()) |
|
|
|
|
|
|
|
cpu_data = OrderedDict() |
|
device_data = OrderedDict() |
|
for k in data_keys: |
|
t = data[k] |
|
if not torch.is_tensor(t): |
|
cpu_data[k] = torch.tensor(t, dtype=torch.double) |
|
elif t.device.type != device.type: |
|
cpu_data[k] = t.to(dtype=torch.double) |
|
else: |
|
device_data[k] = t.to(dtype=torch.double) |
|
|
|
def _all_reduce_dict(data: OrderedDict): |
|
if len(data) == 0: |
|
return data |
|
buf = torch.cat([t.view(-1) for t in data.values()]).to(device=device) |
|
all_reduce(buf, group=group) |
|
split_buf = torch.split(buf.clone(), [t.numel() for t in data.values()]) |
|
reduced_data = [t.view_as(orig) for t, orig in zip(split_buf, data.values())] |
|
return OrderedDict(zip(data.keys(), reduced_data)) |
|
|
|
cpu_data = _all_reduce_dict(cpu_data) |
|
device_data = _all_reduce_dict(device_data) |
|
|
|
def get_from_stack(key): |
|
if key in cpu_data: |
|
return cpu_data[key] |
|
elif key in device_data: |
|
return device_data[key] |
|
raise KeyError |
|
|
|
return OrderedDict([(key, get_from_stack(key)) for key in data_keys]) |
|
|
|
|
|
def broadcast_tensors( |
|
tensors: Optional[List[torch.Tensor]], |
|
src_rank: int, |
|
group: object, |
|
dist_device: Optional[torch.device] = None, |
|
) -> List[torch.Tensor]: |
|
""" |
|
Broadcasts a list of tensors without other (non-src) ranks needing to know |
|
the dtypes/shapes of the tensors. |
|
""" |
|
if dist_device is None: |
|
if torch.distributed.get_backend(group) == "nccl": |
|
dist_device = torch.device("cuda") |
|
else: |
|
dist_device = torch.device("cpu") |
|
|
|
|
|
is_src_rank = get_rank(group) == src_rank |
|
if is_src_rank: |
|
metadata = [ |
|
{"size": t.size(), "dtype": t.dtype, "device": t.device} for t in tensors |
|
] |
|
metadata = _broadcast_object_slow(metadata, src_rank, group, dist_device) |
|
else: |
|
metadata = _broadcast_object_slow(None, src_rank, group, dist_device) |
|
|
|
out_tensors = [] |
|
for i, meta in enumerate(metadata): |
|
if is_src_rank: |
|
tensor = tensors[i] |
|
broadcast(tensors[i].to(dist_device), src=src_rank, group=group) |
|
else: |
|
tensor = torch.zeros( |
|
[meta["size"].numel()], dtype=meta["dtype"], device=dist_device |
|
) |
|
broadcast(tensor, src=src_rank, group=group) |
|
tensor = tensor.view(meta["size"]).to(meta["device"]) |
|
out_tensors.append(tensor) |
|
return out_tensors |
|
|
|
|
|
def broadcast_object( |
|
obj: Any, |
|
src_rank: int, |
|
group: object, |
|
dist_device: Optional[torch.device] = None, |
|
) -> Any: |
|
"""Broadcast an arbitrary Python object to other workers.""" |
|
if dist_device is None: |
|
if torch.distributed.get_backend(group) == "nccl": |
|
dist_device = torch.device("cuda") |
|
else: |
|
dist_device = torch.device("cpu") |
|
|
|
if get_rank(group) == src_rank: |
|
|
|
|
|
tensors = [] |
|
obj = _split_tensors_from_obj(obj, tensors) |
|
obj = _broadcast_object_slow(obj, src_rank, group, dist_device) |
|
tensors = broadcast_tensors(tensors, src_rank, group, dist_device) |
|
else: |
|
obj = _broadcast_object_slow(None, src_rank, group, dist_device) |
|
tensors = broadcast_tensors(None, src_rank, group, dist_device) |
|
return _put_tensors_in_obj(obj, tensors) |
|
|
|
|
|
def _broadcast_object_slow( |
|
obj: Any, |
|
src_rank: int, |
|
group: object, |
|
dist_device: torch.device, |
|
) -> Any: |
|
if get_rank(group) == src_rank: |
|
|
|
buffer = io.BytesIO() |
|
torch.save(obj, buffer) |
|
buffer = torch.ByteTensor(buffer.getbuffer()).to(dist_device) |
|
length = torch.LongTensor([len(buffer)]).to(dist_device) |
|
broadcast(length, src=src_rank, group=group) |
|
broadcast(buffer, src=src_rank, group=group) |
|
else: |
|
|
|
length = torch.LongTensor([0]).to(dist_device) |
|
broadcast(length, src=src_rank, group=group) |
|
buffer = torch.ByteTensor(int(length.item())).to(dist_device) |
|
broadcast(buffer, src=src_rank, group=group) |
|
buffer = io.BytesIO(buffer.cpu().numpy()) |
|
obj = torch.load(buffer, map_location="cpu") |
|
return obj |
|
|
|
|
|
@dataclass(frozen=True) |
|
class _TensorPlaceholder: |
|
index: int |
|
|
|
|
|
def _split_tensors_from_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: |
|
if torch.is_tensor(obj): |
|
placeholder = _TensorPlaceholder(index=len(tensors)) |
|
tensors.append(obj) |
|
return placeholder |
|
elif isinstance(obj, dict): |
|
return {k: _split_tensors_from_obj(v, tensors) for k, v in obj.items()} |
|
elif isinstance(obj, list): |
|
return [_split_tensors_from_obj(v, tensors) for v in obj] |
|
elif isinstance(obj, tuple): |
|
return tuple(_split_tensors_from_obj(v, tensors) for v in obj) |
|
elif isinstance(obj, set): |
|
return {_split_tensors_from_obj(v, tensors) for v in obj} |
|
else: |
|
return obj |
|
|
|
|
|
def _put_tensors_in_obj(obj: Any, tensors: List[torch.Tensor]) -> Any: |
|
if isinstance(obj, _TensorPlaceholder): |
|
return tensors[obj.index] |
|
elif isinstance(obj, dict): |
|
return {k: _put_tensors_in_obj(v, tensors) for k, v in obj.items()} |
|
elif isinstance(obj, list): |
|
return [_put_tensors_in_obj(v, tensors) for v in obj] |
|
elif isinstance(obj, tuple): |
|
return tuple(_put_tensors_in_obj(v, tensors) for v in obj) |
|
elif isinstance(obj, set): |
|
return {_put_tensors_in_obj(v, tensors) for v in obj} |
|
else: |
|
return obj |
|
|