|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from dataclasses import dataclass, field |
|
from typing import Dict, List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from omegaconf import II |
|
|
|
from fairseq import utils |
|
from fairseq.data.data_utils import compute_mask_indices |
|
from fairseq.data.dictionary import Dictionary |
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass |
|
from fairseq.models import BaseFairseqModel, register_model |
|
from fairseq.models.wav2vec.wav2vec2 import ( |
|
EXTRACTOR_MODE_CHOICES, |
|
MASKING_DISTRIBUTION_CHOICES, |
|
LAYER_TYPE_CHOICES, |
|
ConvFeatureExtractionModel, |
|
TransformerEncoder, |
|
) |
|
from fairseq.modules import GradMultiply, LayerNorm |
|
from fairseq.tasks.hubert_pretraining import ( |
|
HubertPretrainingConfig, |
|
HubertPretrainingTask, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class HubertConfig(FairseqDataclass): |
|
label_rate: float = II("task.label_rate") |
|
|
|
extractor_mode: EXTRACTOR_MODE_CHOICES = field( |
|
default="default", |
|
metadata={ |
|
"help": "mode for feature extractor. default has a single group " |
|
"norm with d groups in the first conv block, whereas layer_norm " |
|
"has layer norms in every block (meant to use with normalize=True)" |
|
}, |
|
) |
|
encoder_layers: int = field( |
|
default=12, metadata={"help": "num encoder layers in the transformer"} |
|
) |
|
encoder_embed_dim: int = field( |
|
default=768, metadata={"help": "encoder embedding dimension"} |
|
) |
|
encoder_ffn_embed_dim: int = field( |
|
default=3072, metadata={"help": "encoder embedding dimension for FFN"} |
|
) |
|
encoder_attention_heads: int = field( |
|
default=12, metadata={"help": "num encoder attention heads"} |
|
) |
|
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( |
|
default="gelu", metadata={"help": "activation function to use"} |
|
) |
|
layer_type: LAYER_TYPE_CHOICES = field( |
|
default="transformer", metadata={"help": "layer type in encoder"} |
|
) |
|
|
|
|
|
dropout: float = field( |
|
default=0.1, |
|
metadata={"help": "dropout probability for the transformer"}, |
|
) |
|
attention_dropout: float = field( |
|
default=0.1, |
|
metadata={"help": "dropout probability for attention weights"}, |
|
) |
|
activation_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "dropout probability after activation in FFN"}, |
|
) |
|
encoder_layerdrop: float = field( |
|
default=0.0, |
|
metadata={"help": "probability of dropping a tarnsformer layer"}, |
|
) |
|
dropout_input: float = field( |
|
default=0.0, |
|
metadata={"help": "dropout to apply to the input (after feat extr)"}, |
|
) |
|
dropout_features: float = field( |
|
default=0.0, |
|
metadata={"help": "dropout to apply to the features (after feat extr)"}, |
|
) |
|
|
|
final_dim: int = field( |
|
default=0, |
|
metadata={ |
|
"help": "project final representations and targets to this many " |
|
"dimensions. set to encoder_embed_dim is <= 0" |
|
}, |
|
) |
|
untie_final_proj: bool = field( |
|
default=False, |
|
metadata={"help": "use separate projection for each target"}, |
|
) |
|
layer_norm_first: bool = field( |
|
default=False, |
|
metadata={"help": "apply layernorm first in the transformer"}, |
|
) |
|
conv_feature_layers: str = field( |
|
default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", |
|
metadata={ |
|
"help": "string describing convolutional feature extraction " |
|
"layers in form of a python list that contains " |
|
"[(dim, kernel_size, stride), ...]" |
|
}, |
|
) |
|
conv_bias: bool = field( |
|
default=False, metadata={"help": "include bias in conv encoder"} |
|
) |
|
logit_temp: float = field( |
|
default=0.1, metadata={"help": "temperature to divide logits by"} |
|
) |
|
target_glu: bool = field( |
|
default=False, metadata={"help": "adds projection + glu to targets"} |
|
) |
|
feature_grad_mult: float = field( |
|
default=1.0, |
|
metadata={"help": "multiply feature extractor var grads by this"}, |
|
) |
|
|
|
|
|
mask_length: int = field(default=10, metadata={"help": "mask length"}) |
|
mask_prob: float = field( |
|
default=0.65, |
|
metadata={"help": "probability of replacing a token with mask"}, |
|
) |
|
mask_selection: MASKING_DISTRIBUTION_CHOICES = field( |
|
default="static", metadata={"help": "how to choose mask length"} |
|
) |
|
mask_other: float = field( |
|
default=0, |
|
metadata={ |
|
"help": "secondary mask argument " |
|
"(used for more complex distributions), " |
|
"see help in compute_mask_indicesh" |
|
}, |
|
) |
|
no_mask_overlap: bool = field( |
|
default=False, metadata={"help": "whether to allow masks to overlap"} |
|
) |
|
mask_min_space: int = field( |
|
default=1, |
|
metadata={"help": "min space between spans (if no overlap is enabled)"}, |
|
) |
|
|
|
|
|
mask_channel_length: int = field( |
|
default=10, |
|
metadata={"help": "length of the mask for features (channels)"}, |
|
) |
|
mask_channel_prob: float = field( |
|
default=0.0, |
|
metadata={"help": "probability of replacing a feature with 0"}, |
|
) |
|
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( |
|
default="static", |
|
metadata={"help": "how to choose mask length for channel masking"}, |
|
) |
|
mask_channel_other: float = field( |
|
default=0, |
|
metadata={ |
|
"help": "secondary mask argument " |
|
"(used for more complex distributions), " |
|
"see help in compute_mask_indicesh" |
|
}, |
|
) |
|
no_mask_channel_overlap: bool = field( |
|
default=False, |
|
metadata={"help": "whether to allow channel masks to overlap"}, |
|
) |
|
mask_channel_min_space: int = field( |
|
default=1, |
|
metadata={"help": "min space between spans (if no overlap is enabled)"}, |
|
) |
|
|
|
|
|
conv_pos: int = field( |
|
default=128, |
|
metadata={"help": "number of filters for convolutional positional embeddings"}, |
|
) |
|
conv_pos_groups: int = field( |
|
default=16, |
|
metadata={"help": "number of groups for convolutional positional embedding"}, |
|
) |
|
|
|
latent_temp: Tuple[float, float, float] = field( |
|
default=(2, 0.5, 0.999995), |
|
metadata={"help": "legacy (to be removed)"}, |
|
) |
|
|
|
|
|
skip_masked: bool = field( |
|
default=False, |
|
metadata={"help": "skip computing losses over masked frames"}, |
|
) |
|
skip_nomask: bool = field( |
|
default=False, |
|
metadata={"help": "skip computing losses over unmasked frames"}, |
|
) |
|
|
|
checkpoint_activations: bool = field( |
|
default=False, |
|
metadata={"help": "recompute activations and save memory for extra compute"}, |
|
) |
|
|
|
|
|
required_seq_len_multiple: int = field( |
|
default=2, |
|
metadata={ |
|
"help": "pad the input to encoder such that the sequence length is divisible by multiple" |
|
}, |
|
) |
|
|
|
|
|
depthwise_conv_kernel_size: int = field( |
|
default=31, |
|
metadata={ |
|
"help": "depthwise-conv-kernel-size for convolution in conformer layer" |
|
}, |
|
) |
|
attn_type: str = field( |
|
default="", |
|
metadata={"help": "if espnet use ESPNET MHA"}, |
|
) |
|
pos_enc_type: str = field( |
|
default="abs", |
|
metadata={"help": "Positional encoding type to use in conformer"}, |
|
) |
|
fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"}) |
|
|
|
|
|
@register_model("hubert", dataclass=HubertConfig) |
|
class HubertModel(BaseFairseqModel): |
|
def __init__( |
|
self, |
|
cfg: HubertConfig, |
|
task_cfg: HubertPretrainingConfig, |
|
dictionaries: List[Dictionary], |
|
) -> None: |
|
super().__init__() |
|
logger.info(f"HubertModel Config: {cfg}") |
|
|
|
feature_enc_layers = eval(cfg.conv_feature_layers) |
|
self.embed = feature_enc_layers[-1][0] |
|
|
|
self.feature_extractor = ConvFeatureExtractionModel( |
|
conv_layers=feature_enc_layers, |
|
dropout=0.0, |
|
mode=cfg.extractor_mode, |
|
conv_bias=cfg.conv_bias, |
|
) |
|
feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) |
|
self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate |
|
|
|
self.post_extract_proj = ( |
|
nn.Linear(self.embed, cfg.encoder_embed_dim) |
|
if self.embed != cfg.encoder_embed_dim |
|
else None |
|
) |
|
|
|
self.mask_prob = cfg.mask_prob |
|
self.mask_selection = cfg.mask_selection |
|
self.mask_other = cfg.mask_other |
|
self.mask_length = cfg.mask_length |
|
self.no_mask_overlap = cfg.no_mask_overlap |
|
self.mask_min_space = cfg.mask_min_space |
|
|
|
self.mask_channel_prob = cfg.mask_channel_prob |
|
self.mask_channel_selection = cfg.mask_channel_selection |
|
self.mask_channel_other = cfg.mask_channel_other |
|
self.mask_channel_length = cfg.mask_channel_length |
|
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap |
|
self.mask_channel_min_space = cfg.mask_channel_min_space |
|
|
|
self.dropout_input = nn.Dropout(cfg.dropout_input) |
|
self.dropout_features = nn.Dropout(cfg.dropout_features) |
|
|
|
self.feature_grad_mult = cfg.feature_grad_mult |
|
self.logit_temp = cfg.logit_temp |
|
self.skip_masked = cfg.skip_masked |
|
self.skip_nomask = cfg.skip_nomask |
|
|
|
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim |
|
|
|
self.mask_emb = nn.Parameter( |
|
torch.FloatTensor(cfg.encoder_embed_dim).uniform_() |
|
) |
|
|
|
self.encoder = TransformerEncoder(cfg) |
|
self.layer_norm = LayerNorm(self.embed) |
|
|
|
self.target_glu = None |
|
if cfg.target_glu: |
|
self.target_glu = nn.Sequential( |
|
nn.Linear(final_dim, final_dim * 2), nn.GLU() |
|
) |
|
|
|
self.untie_final_proj = cfg.untie_final_proj |
|
if self.untie_final_proj: |
|
self.final_proj = nn.Linear( |
|
cfg.encoder_embed_dim, final_dim * len(dictionaries) |
|
) |
|
else: |
|
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) |
|
|
|
|
|
if any([d is None for d in dictionaries]): |
|
logger.info("cannot find dictionary. assume will be used for fine-tuning") |
|
else: |
|
self.num_classes = [len(d) for d in dictionaries] |
|
self.label_embs_concat = nn.Parameter( |
|
torch.FloatTensor(sum(self.num_classes), final_dim) |
|
) |
|
nn.init.uniform_(self.label_embs_concat) |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" |
|
|
|
super().upgrade_state_dict_named(state_dict, name) |
|
return state_dict |
|
|
|
@classmethod |
|
def build_model(cls, cfg: HubertConfig, task: HubertPretrainingTask): |
|
"""Build a new model instance.""" |
|
|
|
model = HubertModel(cfg, task.cfg, task.dictionaries) |
|
return model |
|
|
|
def apply_mask(self, x, padding_mask, target_list): |
|
B, T, C = x.shape |
|
if self.mask_prob > 0: |
|
mask_indices = compute_mask_indices( |
|
(B, T), |
|
padding_mask, |
|
self.mask_prob, |
|
self.mask_length, |
|
self.mask_selection, |
|
self.mask_other, |
|
min_masks=2, |
|
no_overlap=self.no_mask_overlap, |
|
min_space=self.mask_min_space, |
|
) |
|
mask_indices = torch.from_numpy(mask_indices).to(x.device) |
|
x[mask_indices] = self.mask_emb |
|
else: |
|
mask_indices = None |
|
|
|
if self.mask_channel_prob > 0: |
|
mask_channel_indices = compute_mask_indices( |
|
(B, C), |
|
None, |
|
self.mask_channel_prob, |
|
self.mask_channel_length, |
|
self.mask_channel_selection, |
|
self.mask_channel_other, |
|
no_overlap=self.no_mask_channel_overlap, |
|
min_space=self.mask_channel_min_space, |
|
) |
|
mask_channel_indices = ( |
|
torch.from_numpy(mask_channel_indices) |
|
.to(x.device) |
|
.unsqueeze(1) |
|
.expand(-1, T, -1) |
|
) |
|
x[mask_channel_indices] = 0 |
|
|
|
return x, mask_indices |
|
|
|
def compute_nce(self, x, pos, negs): |
|
neg_is_pos = (pos == negs).all(-1) |
|
pos = pos.unsqueeze(0) |
|
targets = torch.cat([pos, negs], dim=0) |
|
|
|
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) |
|
logits /= self.logit_temp |
|
if neg_is_pos.any(): |
|
logits[1:][neg_is_pos] = float("-inf") |
|
logits = logits.transpose(0, 1) |
|
return logits |
|
|
|
def forward_features(self, source: torch.Tensor) -> torch.Tensor: |
|
if self.feature_grad_mult > 0: |
|
features = self.feature_extractor(source) |
|
if self.feature_grad_mult != 1.0: |
|
features = GradMultiply.apply(features, self.feature_grad_mult) |
|
else: |
|
with torch.no_grad(): |
|
features = self.feature_extractor(source) |
|
return features |
|
|
|
def forward_targets( |
|
self, |
|
features: torch.Tensor, |
|
target_list: List[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
feat_tsz = features.size(2) |
|
targ_tsz = min([t.size(1) for t in target_list]) |
|
if self.feat2tar_ratio * feat_tsz > targ_tsz: |
|
feat_tsz = int(targ_tsz / self.feat2tar_ratio) |
|
features = features[..., :feat_tsz] |
|
target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio |
|
target_list = [t[:, target_inds.long()] for t in target_list] |
|
return features, target_list |
|
|
|
def forward_padding_mask( |
|
self, |
|
features: torch.Tensor, |
|
padding_mask: torch.Tensor, |
|
) -> torch.Tensor: |
|
extra = padding_mask.size(1) % features.size(1) |
|
if extra > 0: |
|
padding_mask = padding_mask[:, :-extra] |
|
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) |
|
padding_mask = padding_mask.all(-1) |
|
return padding_mask |
|
|
|
def forward( |
|
self, |
|
source: torch.Tensor, |
|
target_list: Optional[List[torch.Tensor]] = None, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
mask: bool = True, |
|
features_only: bool = False, |
|
output_layer: Optional[int] = None, |
|
) -> Dict[str, torch.Tensor]: |
|
"""output layer is 1-based""" |
|
features = self.forward_features(source) |
|
if target_list is not None: |
|
features, target_list = self.forward_targets(features, target_list) |
|
|
|
features_pen = features.float().pow(2).mean() |
|
|
|
features = features.transpose(1, 2) |
|
features = self.layer_norm(features) |
|
unmasked_features = features.clone() |
|
|
|
if padding_mask is not None: |
|
padding_mask = self.forward_padding_mask(features, padding_mask) |
|
|
|
if self.post_extract_proj is not None: |
|
features = self.post_extract_proj(features) |
|
|
|
features = self.dropout_input(features) |
|
unmasked_features = self.dropout_features(unmasked_features) |
|
|
|
if mask: |
|
x, mask_indices = self.apply_mask(features, padding_mask, target_list) |
|
else: |
|
x = features |
|
mask_indices = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
x, _ = self.encoder( |
|
x, |
|
padding_mask=padding_mask, |
|
layer=None if output_layer is None else output_layer - 1, |
|
) |
|
|
|
if features_only: |
|
return {"x": x, "padding_mask": padding_mask, "features": features} |
|
|
|
def compute_pred(proj_x, target, label_embs): |
|
|
|
y = torch.index_select(label_embs, 0, target.long()) |
|
negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1) |
|
if self.target_glu: |
|
y = self.target_glu(y) |
|
negs = self.target_glu(negs) |
|
|
|
|
|
|
|
return self.compute_nce(proj_x, y, negs) |
|
|
|
label_embs_list = self.label_embs_concat.split(self.num_classes, 0) |
|
|
|
if not self.skip_masked: |
|
masked_indices = torch.logical_and(~padding_mask, mask_indices) |
|
proj_x_m = self.final_proj(x[masked_indices]) |
|
if self.untie_final_proj: |
|
proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1) |
|
else: |
|
proj_x_m_list = [proj_x_m for _ in range(len(target_list))] |
|
logit_m_list = [ |
|
compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) |
|
for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list)) |
|
] |
|
else: |
|
logit_m_list = [None for _ in target_list] |
|
|
|
if not self.skip_nomask: |
|
nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) |
|
proj_x_u = self.final_proj(x[nomask_indices]) |
|
if self.untie_final_proj: |
|
proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1) |
|
else: |
|
proj_x_u_list = [proj_x_u for _ in range(len(target_list))] |
|
|
|
logit_u_list = [ |
|
compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) |
|
for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list)) |
|
] |
|
else: |
|
logit_u_list = [None for _ in target_list] |
|
|
|
result = { |
|
"logit_m_list": logit_m_list, |
|
"logit_u_list": logit_u_list, |
|
"padding_mask": padding_mask, |
|
"features_pen": features_pen, |
|
} |
|
return result |
|
|
|
def extract_features( |
|
self, |
|
source: torch.Tensor, |
|
padding_mask: Optional[torch.Tensor] = None, |
|
mask: bool = False, |
|
ret_conv: bool = False, |
|
output_layer: Optional[int] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
res = self.forward( |
|
source, |
|
padding_mask=padding_mask, |
|
mask=mask, |
|
features_only=True, |
|
output_layer=output_layer, |
|
) |
|
feature = res["features"] if ret_conv else res["x"] |
|
return feature, res["padding_mask"] |
|
|
|
def get_logits(self, net_output, is_masked=True): |
|
if is_masked: |
|
logits_list = net_output["logit_m_list"] |
|
else: |
|
logits_list = net_output["logit_u_list"] |
|
logits_list = [x.float() for x in logits_list if x is not None] |
|
return logits_list |
|
|
|
def get_targets(self, net_output, is_masked=True): |
|
logits_list = self.get_logits(net_output, is_masked) |
|
targets_list = [x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list] |
|
return targets_list |
|
|
|
def get_extra_losses(self, net_output): |
|
extra_losses = [] |
|
names = [] |
|
|
|
if "features_pen" in net_output: |
|
extra_losses.append(net_output["features_pen"]) |
|
names.append("features_pen") |
|
|
|
return extra_losses, names |
|
|
|
def remove_pretraining_modules(self): |
|
self.target_glu = None |
|
self.final_proj = None |
|
|