|
|
|
|
|
|
|
|
|
""" |
|
RoBERTa: A Robustly Optimized BERT Pretraining Approach. |
|
""" |
|
|
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from fairseq import utils |
|
from fairseq.models import ( |
|
FairseqEncoder, |
|
FairseqEncoderModel, |
|
register_model, |
|
register_model_architecture, |
|
) |
|
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, TransformerEncoder |
|
from fairseq.modules import LayerNorm |
|
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ |
|
from fairseq.modules.transformer_sentence_encoder import init_bert_params |
|
from fairseq.utils import safe_getattr, safe_hasattr |
|
|
|
from .hub_interface import RobertaHubInterface |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@register_model("roberta") |
|
class RobertaModel(FairseqEncoderModel): |
|
@classmethod |
|
def hub_models(cls): |
|
return { |
|
"roberta.base": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz", |
|
"roberta.large": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz", |
|
"roberta.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz", |
|
"roberta.large.wsc": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz", |
|
} |
|
|
|
def __init__(self, args, encoder): |
|
super().__init__(encoder) |
|
self.args = args |
|
|
|
|
|
self.apply(init_bert_params) |
|
|
|
self.classification_heads = nn.ModuleDict() |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add model-specific arguments to the parser.""" |
|
parser.add_argument( |
|
"--encoder-layers", type=int, metavar="L", help="num encoder layers" |
|
) |
|
parser.add_argument( |
|
"--encoder-embed-dim", |
|
type=int, |
|
metavar="H", |
|
help="encoder embedding dimension", |
|
) |
|
parser.add_argument( |
|
"--encoder-ffn-embed-dim", |
|
type=int, |
|
metavar="F", |
|
help="encoder embedding dimension for FFN", |
|
) |
|
parser.add_argument( |
|
"--encoder-attention-heads", |
|
type=int, |
|
metavar="A", |
|
help="num encoder attention heads", |
|
) |
|
parser.add_argument( |
|
"--activation-fn", |
|
choices=utils.get_available_activation_fns(), |
|
help="activation function to use", |
|
) |
|
parser.add_argument( |
|
"--pooler-activation-fn", |
|
choices=utils.get_available_activation_fns(), |
|
help="activation function to use for pooler layer", |
|
) |
|
parser.add_argument( |
|
"--encoder-normalize-before", |
|
action="store_true", |
|
help="apply layernorm before each encoder block", |
|
) |
|
parser.add_argument( |
|
"--layernorm-embedding", |
|
action="store_true", |
|
help="add layernorm to embedding", |
|
) |
|
parser.add_argument( |
|
"--dropout", type=float, metavar="D", help="dropout probability" |
|
) |
|
parser.add_argument( |
|
"--attention-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability for attention weights", |
|
) |
|
parser.add_argument( |
|
"--activation-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability after activation in FFN", |
|
) |
|
parser.add_argument( |
|
"--pooler-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability in the masked_lm pooler layers", |
|
) |
|
parser.add_argument( |
|
"--max-positions", type=int, help="number of positional embeddings to learn" |
|
) |
|
parser.add_argument( |
|
"--load-checkpoint-heads", |
|
action="store_true", |
|
help="(re-)register and load heads when loading checkpoints", |
|
) |
|
parser.add_argument( |
|
"--untie-weights-roberta", |
|
action="store_true", |
|
help="Untie weights between embeddings and classifiers in RoBERTa", |
|
) |
|
|
|
parser.add_argument( |
|
"--encoder-layerdrop", |
|
type=float, |
|
metavar="D", |
|
default=0, |
|
help="LayerDrop probability for encoder", |
|
) |
|
parser.add_argument( |
|
"--encoder-layers-to-keep", |
|
default=None, |
|
help="which layers to *keep* when pruning as a comma-separated list", |
|
) |
|
|
|
parser.add_argument( |
|
"--quant-noise-pq", |
|
type=float, |
|
metavar="D", |
|
default=0, |
|
help="iterative PQ quantization noise at training time", |
|
) |
|
parser.add_argument( |
|
"--quant-noise-pq-block-size", |
|
type=int, |
|
metavar="D", |
|
default=8, |
|
help="block size of quantization noise at training time", |
|
) |
|
parser.add_argument( |
|
"--quant-noise-scalar", |
|
type=float, |
|
metavar="D", |
|
default=0, |
|
help="scalar quantization noise and scalar quantization at training time", |
|
) |
|
|
|
parser.add_argument( |
|
"--spectral-norm-classification-head", |
|
action="store_true", |
|
default=False, |
|
help="Apply spectral normalization on the classification head", |
|
) |
|
|
|
parser.add_argument( |
|
"--min-params-to-wrap", |
|
type=int, |
|
metavar="D", |
|
default=DEFAULT_MIN_PARAMS_TO_WRAP, |
|
help=( |
|
"minimum number of params for a layer to be wrapped with FSDP() when " |
|
"training with --ddp-backend=fully_sharded. Smaller values will " |
|
"improve memory efficiency, but may make torch.distributed " |
|
"communication less efficient due to smaller input sizes. This option " |
|
"is set to 0 (i.e., always wrap) when --checkpoint-activations or " |
|
"--offload-activations are passed." |
|
), |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--mha-reg-scale-factor", |
|
type=float, |
|
metavar="D", |
|
default=0.0, |
|
help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", |
|
) |
|
parser.add_argument( |
|
"--ffn-reg-scale-factor", |
|
type=float, |
|
metavar="D", |
|
default=0.0, |
|
help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", |
|
) |
|
parser.add_argument( |
|
"--mha-heads-to-keep", |
|
type=int, |
|
metavar="D", |
|
default=-1, |
|
help="number of heads to keep in each multi-head attention module, -1 means keeping all heads", |
|
) |
|
parser.add_argument( |
|
"--ffn-blocks-to-remove", |
|
type=int, |
|
metavar="D", |
|
default=-1, |
|
help="number of feedforward blocks to remove in each transformer layer, -1 means keeping all ffn blocks", |
|
) |
|
|
|
@classmethod |
|
def build_model(cls, args, task): |
|
"""Build a new model instance.""" |
|
|
|
from omegaconf import OmegaConf |
|
|
|
if OmegaConf.is_config(args): |
|
OmegaConf.set_struct(args, False) |
|
|
|
|
|
base_architecture(args) |
|
|
|
if not safe_hasattr(args, "max_positions"): |
|
if not safe_hasattr(args, "tokens_per_sample"): |
|
args.tokens_per_sample = task.max_positions() |
|
args.max_positions = args.tokens_per_sample |
|
|
|
encoder = RobertaEncoder(args, task.source_dictionary) |
|
|
|
if OmegaConf.is_config(args): |
|
OmegaConf.set_struct(args, True) |
|
|
|
return cls(args, encoder) |
|
|
|
def forward( |
|
self, |
|
src_tokens, |
|
features_only=False, |
|
return_all_hiddens=False, |
|
classification_head_name=None, |
|
**kwargs, |
|
): |
|
if classification_head_name is not None: |
|
features_only = True |
|
|
|
x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) |
|
|
|
if classification_head_name is not None: |
|
x = self.classification_heads[classification_head_name](x) |
|
return x, extra |
|
|
|
def _get_adaptive_head_loss(self): |
|
norm_loss = 0 |
|
scaling = float(self.args.mha_reg_scale_factor) |
|
for layer in self.encoder.sentence_encoder.layers: |
|
norm_loss_layer = 0 |
|
for i in range(layer.self_attn.num_heads): |
|
start_idx = i * layer.self_attn.head_dim |
|
end_idx = (i + 1) * layer.self_attn.head_dim |
|
norm_loss_layer += scaling * ( |
|
torch.sum( |
|
torch.abs( |
|
layer.self_attn.q_proj.weight[ |
|
start_idx:end_idx, |
|
] |
|
) |
|
) |
|
+ torch.sum( |
|
torch.abs(layer.self_attn.q_proj.bias[start_idx:end_idx]) |
|
) |
|
) |
|
norm_loss_layer += scaling * ( |
|
torch.sum( |
|
torch.abs( |
|
layer.self_attn.k_proj.weight[ |
|
start_idx:end_idx, |
|
] |
|
) |
|
) |
|
+ torch.sum( |
|
torch.abs(layer.self_attn.k_proj.bias[start_idx:end_idx]) |
|
) |
|
) |
|
norm_loss_layer += scaling * ( |
|
torch.sum( |
|
torch.abs( |
|
layer.self_attn.v_proj.weight[ |
|
start_idx:end_idx, |
|
] |
|
) |
|
) |
|
+ torch.sum( |
|
torch.abs(layer.self_attn.v_proj.bias[start_idx:end_idx]) |
|
) |
|
) |
|
|
|
norm_loss += norm_loss_layer |
|
return norm_loss |
|
|
|
def _get_adaptive_ffn_loss(self): |
|
ffn_scale_factor = float(self.args.ffn_reg_scale_factor) |
|
filter_loss = 0 |
|
for layer in self.encoder.sentence_encoder.layers: |
|
filter_loss += torch.sum( |
|
torch.abs(layer.fc1.weight * ffn_scale_factor) |
|
) + torch.sum(torch.abs(layer.fc2.weight * ffn_scale_factor)) |
|
filter_loss += torch.sum( |
|
torch.abs(layer.fc1.bias * ffn_scale_factor) |
|
) + torch.sum(torch.abs(layer.fc2.bias * ffn_scale_factor)) |
|
return filter_loss |
|
|
|
def get_normalized_probs(self, net_output, log_probs, sample=None): |
|
"""Get normalized probabilities (or log probs) from a net's output.""" |
|
logits = net_output[0].float() |
|
if log_probs: |
|
return F.log_softmax(logits, dim=-1) |
|
else: |
|
return F.softmax(logits, dim=-1) |
|
|
|
def register_classification_head( |
|
self, name, num_classes=None, inner_dim=None, **kwargs |
|
): |
|
"""Register a classification head.""" |
|
if name in self.classification_heads: |
|
prev_num_classes = self.classification_heads[name].out_proj.out_features |
|
prev_inner_dim = self.classification_heads[name].dense.out_features |
|
if num_classes != prev_num_classes or inner_dim != prev_inner_dim: |
|
logger.warning( |
|
're-registering head "{}" with num_classes {} (prev: {}) ' |
|
"and inner_dim {} (prev: {})".format( |
|
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim |
|
) |
|
) |
|
self.classification_heads[name] = RobertaClassificationHead( |
|
input_dim=self.args.encoder_embed_dim, |
|
inner_dim=inner_dim or self.args.encoder_embed_dim, |
|
num_classes=num_classes, |
|
activation_fn=self.args.pooler_activation_fn, |
|
pooler_dropout=self.args.pooler_dropout, |
|
q_noise=self.args.quant_noise_pq, |
|
qn_block_size=self.args.quant_noise_pq_block_size, |
|
do_spectral_norm=self.args.spectral_norm_classification_head, |
|
) |
|
|
|
@property |
|
def supported_targets(self): |
|
return {"self"} |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
model_name_or_path, |
|
checkpoint_file="model.pt", |
|
data_name_or_path=".", |
|
bpe="gpt2", |
|
**kwargs, |
|
): |
|
from fairseq import hub_utils |
|
|
|
x = hub_utils.from_pretrained( |
|
model_name_or_path, |
|
checkpoint_file, |
|
data_name_or_path, |
|
archive_map=cls.hub_models(), |
|
bpe=bpe, |
|
load_checkpoint_heads=True, |
|
**kwargs, |
|
) |
|
|
|
logger.info(x["args"]) |
|
return RobertaHubInterface(x["args"], x["task"], x["models"][0]) |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
prefix = name + "." if name != "" else "" |
|
|
|
|
|
for k in list(state_dict.keys()): |
|
if k.startswith(prefix + "decoder"): |
|
new_k = prefix + "encoder" + k[len(prefix + "decoder") :] |
|
state_dict[new_k] = state_dict[k] |
|
del state_dict[k] |
|
|
|
|
|
for k in list(state_dict.keys()): |
|
if ".emb_layer_norm." in k: |
|
new_k = k.replace(".emb_layer_norm.", ".layernorm_embedding.") |
|
state_dict[new_k] = state_dict[k] |
|
del state_dict[k] |
|
|
|
|
|
super().upgrade_state_dict_named(state_dict, name) |
|
|
|
|
|
current_head_names = ( |
|
[] |
|
if not hasattr(self, "classification_heads") |
|
else self.classification_heads.keys() |
|
) |
|
keys_to_delete = [] |
|
for k in state_dict.keys(): |
|
if not k.startswith(prefix + "classification_heads."): |
|
continue |
|
|
|
head_name = k[len(prefix + "classification_heads.") :].split(".")[0] |
|
num_classes = state_dict[ |
|
prefix + "classification_heads." + head_name + ".out_proj.weight" |
|
].size(0) |
|
inner_dim = state_dict[ |
|
prefix + "classification_heads." + head_name + ".dense.weight" |
|
].size(0) |
|
|
|
if getattr(self.args, "load_checkpoint_heads", False): |
|
if head_name not in current_head_names: |
|
self.register_classification_head(head_name, num_classes, inner_dim) |
|
else: |
|
if head_name not in current_head_names: |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"not present in current model: {}".format(head_name, k) |
|
) |
|
keys_to_delete.append(k) |
|
elif ( |
|
num_classes |
|
!= self.classification_heads[head_name].out_proj.out_features |
|
or inner_dim |
|
!= self.classification_heads[head_name].dense.out_features |
|
): |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"with different dimensions than current model: {}".format( |
|
head_name, k |
|
) |
|
) |
|
keys_to_delete.append(k) |
|
for k in keys_to_delete: |
|
del state_dict[k] |
|
|
|
|
|
|
|
if hasattr(self, "classification_heads"): |
|
cur_state = self.classification_heads.state_dict() |
|
for k, v in cur_state.items(): |
|
if prefix + "classification_heads." + k not in state_dict: |
|
logger.info("Overwriting " + prefix + "classification_heads." + k) |
|
state_dict[prefix + "classification_heads." + k] = v |
|
|
|
|
|
if ( |
|
"encoder._ema" in state_dict |
|
and "encoder.lm_head.weight" not in state_dict |
|
): |
|
lm_state = self.encoder.lm_head.state_dict() |
|
for k, v in lm_state.items(): |
|
state_dict["encoder.lm_head." + k] = v |
|
|
|
for k in list(state_dict.keys()): |
|
if k.startswith("encoder.regression_head") or k == "encoder._ema": |
|
del state_dict[k] |
|
|
|
|
|
class RobertaLMHead(nn.Module): |
|
"""Head for masked language modeling.""" |
|
|
|
def __init__(self, embed_dim, output_dim, activation_fn, weight=None): |
|
super().__init__() |
|
self.dense = nn.Linear(embed_dim, embed_dim) |
|
self.activation_fn = utils.get_activation_fn(activation_fn) |
|
self.layer_norm = LayerNorm(embed_dim) |
|
|
|
if weight is None: |
|
weight = nn.Linear(embed_dim, output_dim, bias=False).weight |
|
self.weight = weight |
|
self.bias = nn.Parameter(torch.zeros(output_dim)) |
|
|
|
def forward(self, features, masked_tokens=None, **kwargs): |
|
|
|
|
|
if masked_tokens is not None: |
|
features = features[masked_tokens, :] |
|
|
|
x = self.dense(features) |
|
x = self.activation_fn(x) |
|
x = self.layer_norm(x) |
|
|
|
x = F.linear(x, self.weight) + self.bias |
|
return x |
|
|
|
|
|
class RobertaClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__( |
|
self, |
|
input_dim, |
|
inner_dim, |
|
num_classes, |
|
activation_fn, |
|
pooler_dropout, |
|
q_noise=0, |
|
qn_block_size=8, |
|
do_spectral_norm=False, |
|
): |
|
super().__init__() |
|
self.dense = nn.Linear(input_dim, inner_dim) |
|
self.activation_fn = utils.get_activation_fn(activation_fn) |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = apply_quant_noise_( |
|
nn.Linear(inner_dim, num_classes), q_noise, qn_block_size |
|
) |
|
if do_spectral_norm: |
|
if q_noise != 0: |
|
raise NotImplementedError( |
|
"Attempting to use Spectral Normalization with Quant Noise. This is not officially supported" |
|
) |
|
self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = self.activation_fn(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class RobertaEncoder(FairseqEncoder): |
|
"""RoBERTa encoder.""" |
|
|
|
def __init__(self, args, dictionary): |
|
super().__init__(dictionary) |
|
|
|
|
|
base_architecture(args) |
|
self.args = args |
|
|
|
if args.encoder_layers_to_keep: |
|
args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) |
|
|
|
embed_tokens = self.build_embedding( |
|
len(dictionary), args.encoder_embed_dim, dictionary.pad() |
|
) |
|
|
|
self.sentence_encoder = self.build_encoder(args, dictionary, embed_tokens) |
|
|
|
self.lm_head = self.build_lm_head( |
|
embed_dim=args.encoder_embed_dim, |
|
output_dim=len(dictionary), |
|
activation_fn=args.activation_fn, |
|
weight=( |
|
self.sentence_encoder.embed_tokens.weight |
|
if not args.untie_weights_roberta |
|
else None |
|
), |
|
) |
|
|
|
def build_embedding(self, vocab_size, embedding_dim, padding_idx): |
|
return nn.Embedding(vocab_size, embedding_dim, padding_idx) |
|
|
|
def build_encoder(self, args, dictionary, embed_tokens): |
|
encoder = TransformerEncoder(args, dictionary, embed_tokens) |
|
encoder.apply(init_bert_params) |
|
return encoder |
|
|
|
def build_lm_head(self, embed_dim, output_dim, activation_fn, weight): |
|
return RobertaLMHead(embed_dim, output_dim, activation_fn, weight) |
|
|
|
def forward( |
|
self, |
|
src_tokens, |
|
features_only=False, |
|
return_all_hiddens=False, |
|
masked_tokens=None, |
|
**unused, |
|
): |
|
""" |
|
Args: |
|
src_tokens (LongTensor): input tokens of shape `(batch, src_len)` |
|
features_only (bool, optional): skip LM head and just return |
|
features. If True, the output will be of shape |
|
`(batch, src_len, embed_dim)`. |
|
return_all_hiddens (bool, optional): also return all of the |
|
intermediate hidden states (default: False). |
|
|
|
Returns: |
|
tuple: |
|
- the LM output of shape `(batch, src_len, vocab)` |
|
- a dictionary of additional data, where 'inner_states' |
|
is a list of hidden states. Note that the hidden |
|
states have shape `(src_len, batch, vocab)`. |
|
""" |
|
x, extra = self.extract_features( |
|
src_tokens, return_all_hiddens=return_all_hiddens |
|
) |
|
if not features_only: |
|
x = self.output_layer(x, masked_tokens=masked_tokens) |
|
return x, extra |
|
|
|
def extract_features(self, src_tokens, return_all_hiddens=False, **kwargs): |
|
encoder_out = self.sentence_encoder( |
|
src_tokens, |
|
return_all_hiddens=return_all_hiddens, |
|
token_embeddings=kwargs.get("token_embeddings", None), |
|
) |
|
|
|
features = encoder_out["encoder_out"][0].transpose(0, 1) |
|
inner_states = encoder_out["encoder_states"] if return_all_hiddens else None |
|
return features, {"inner_states": inner_states} |
|
|
|
def output_layer(self, features, masked_tokens=None, **unused): |
|
return self.lm_head(features, masked_tokens) |
|
|
|
def max_positions(self): |
|
"""Maximum output length supported by the encoder.""" |
|
return self.args.max_positions |
|
|
|
|
|
@register_model_architecture("roberta", "roberta") |
|
def base_architecture(args): |
|
args.encoder_layers = safe_getattr(args, "encoder_layers", 12) |
|
args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 768) |
|
args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 3072) |
|
args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 12) |
|
|
|
args.dropout = safe_getattr(args, "dropout", 0.1) |
|
args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) |
|
args.activation_dropout = safe_getattr(args, "activation_dropout", 0.0) |
|
args.pooler_dropout = safe_getattr(args, "pooler_dropout", 0.0) |
|
|
|
args.max_source_positions = safe_getattr(args, "max_positions", 512) |
|
args.no_token_positional_embeddings = safe_getattr( |
|
args, "no_token_positional_embeddings", False |
|
) |
|
|
|
|
|
args.encoder_learned_pos = safe_getattr(args, "encoder_learned_pos", True) |
|
args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", True) |
|
args.no_scale_embedding = safe_getattr(args, "no_scale_embedding", True) |
|
args.activation_fn = safe_getattr(args, "activation_fn", "gelu") |
|
args.encoder_normalize_before = safe_getattr( |
|
args, "encoder_normalize_before", False |
|
) |
|
args.pooler_activation_fn = safe_getattr(args, "pooler_activation_fn", "tanh") |
|
args.untie_weights_roberta = safe_getattr(args, "untie_weights_roberta", False) |
|
|
|
|
|
args.adaptive_input = safe_getattr(args, "adaptive_input", False) |
|
|
|
|
|
args.encoder_layerdrop = safe_getattr(args, "encoder_layerdrop", 0.0) |
|
args.encoder_layers_to_keep = safe_getattr(args, "encoder_layers_to_keep", None) |
|
|
|
|
|
args.quant_noise_pq = safe_getattr(args, "quant_noise_pq", 0) |
|
args.quant_noise_pq_block_size = safe_getattr(args, "quant_noise_pq_block_size", 8) |
|
args.quant_noise_scalar = safe_getattr(args, "quant_noise_scalar", 0) |
|
|
|
|
|
args.spectral_norm_classification_head = safe_getattr( |
|
args, "spectral_norm_classification_head", False |
|
) |
|
|
|
|
|
@register_model_architecture("roberta", "roberta_prenorm") |
|
def roberta_prenorm_architecture(args): |
|
args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", False) |
|
args.encoder_normalize_before = safe_getattr(args, "encoder_normalize_before", True) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("roberta", "roberta_base") |
|
def roberta_base_architecture(args): |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("roberta", "roberta_large") |
|
def roberta_large_architecture(args): |
|
args.encoder_layers = safe_getattr(args, "encoder_layers", 24) |
|
args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1024) |
|
args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 4096) |
|
args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) |
|
base_architecture(args) |
|
|
|
|
|
@register_model_architecture("roberta", "xlm") |
|
def xlm_architecture(args): |
|
args.encoder_layers = safe_getattr(args, "encoder_layers", 16) |
|
args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1280) |
|
args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 1280 * 4) |
|
args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) |
|
base_architecture(args) |
|
|