|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from fairseq.token_generation_constraints import ( |
|
ConstraintState, |
|
OrderedConstraintState, |
|
UnorderedConstraintState, |
|
) |
|
from torch import Tensor |
|
|
|
|
|
class Search(nn.Module): |
|
def __init__(self, tgt_dict): |
|
super().__init__() |
|
self.pad = tgt_dict.pad() |
|
self.unk = tgt_dict.unk() |
|
self.eos = tgt_dict.eos() |
|
self.vocab_size = len(tgt_dict) |
|
self.src_lengths = torch.tensor(-1) |
|
self.supports_constraints = False |
|
self.stop_on_max_len = False |
|
|
|
def step( |
|
self, step, lprobs, scores, prev_output_tokens=None, original_batch_idxs=None |
|
): |
|
"""Take a single search step. |
|
|
|
Args: |
|
step: the current search step, starting at 0 |
|
lprobs: (bsz x input_beam_size x vocab_size) |
|
the model's log-probabilities over the vocabulary at the current step |
|
scores: (bsz x input_beam_size x step) |
|
the historical model scores of each hypothesis up to this point |
|
prev_output_tokens: (bsz x step) |
|
the previously generated oputput tokens |
|
original_batch_idxs: (bsz) |
|
the tensor with the batch indices, in the range [0, bsz) |
|
this is useful in case there has been applied a re-ordering |
|
and we need to know the orignal indices |
|
|
|
Return: A tuple of (scores, indices, beams) where: |
|
scores: (bsz x output_beam_size) |
|
the scores of the chosen elements; output_beam_size can be |
|
larger than input_beam_size, e.g., we may return |
|
2*input_beam_size to account for EOS |
|
indices: (bsz x output_beam_size) |
|
the indices of the chosen elements |
|
beams: (bsz x output_beam_size) |
|
the hypothesis ids of the chosen elements, in the range [0, input_beam_size) |
|
""" |
|
raise NotImplementedError |
|
|
|
@torch.jit.export |
|
def set_src_lengths(self, src_lengths): |
|
self.src_lengths = src_lengths |
|
|
|
@torch.jit.export |
|
def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): |
|
"""Initialize constraint states for constrained decoding (if supported). |
|
|
|
Args: |
|
batch_constraints: (torch.Tensor, optional) |
|
the list of constraints, in packed form |
|
beam_size: (int) |
|
the beam size |
|
Returns: |
|
*encoder_out* rearranged according to *new_order* |
|
""" |
|
pass |
|
|
|
def prune_sentences(self, batch_idxs: Tensor): |
|
""" |
|
Removes constraint states for completed sentences (if supported). |
|
This is called from sequence_generator._generate() when sentences are |
|
deleted from the batch. |
|
|
|
Args: |
|
batch_idxs: Indices of *sentences* whose constraint state should be *kept*. |
|
""" |
|
pass |
|
|
|
def update_constraints(self, active_hypos: Tensor): |
|
""" |
|
Updates the constraint states by selecting the beam items that are retained. |
|
This is called at each time step of sequence_generator._generate() when |
|
the set of 2 * {beam_size} candidate hypotheses are reduced to the beam size. |
|
|
|
Args: |
|
active_hypos: (batch size, beam size) |
|
list of integers denoting, for each sentence, which beam candidate items |
|
should be kept. |
|
""" |
|
pass |
|
|
|
|
|
class BeamSearch(Search): |
|
def __init__(self, tgt_dict): |
|
super().__init__(tgt_dict) |
|
self.constraint_states = None |
|
|
|
@torch.jit.export |
|
def step( |
|
self, |
|
step: int, |
|
lprobs, |
|
scores: Optional[Tensor], |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
bsz, beam_size, vocab_size = lprobs.size() |
|
|
|
if step == 0: |
|
|
|
|
|
lprobs = lprobs[:, ::beam_size, :].contiguous() |
|
else: |
|
|
|
assert scores is not None |
|
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) |
|
|
|
top_prediction = torch.topk( |
|
lprobs.view(bsz, -1), |
|
k=min( |
|
|
|
|
|
beam_size * 2, |
|
lprobs.view(bsz, -1).size(1) - 1, |
|
), |
|
) |
|
scores_buf = top_prediction[0] |
|
indices_buf = top_prediction[1] |
|
|
|
beams_buf = torch.div(indices_buf, vocab_size, rounding_mode="trunc") |
|
indices_buf = indices_buf.fmod(vocab_size) |
|
|
|
|
|
return scores_buf, indices_buf, beams_buf |
|
|
|
|
|
class PrefixConstrainedBeamSearch(Search): |
|
def __init__(self, tgt_dict, prefix_allowed_tokens_fn): |
|
super().__init__(tgt_dict) |
|
self.prefix_allowed_tokens_fn = prefix_allowed_tokens_fn |
|
self.stop_on_max_len = True |
|
|
|
@torch.jit.export |
|
def apply_mask(self, x, prev_output_tokens, original_batch_idxs): |
|
beam_size = x.shape[0] // original_batch_idxs.shape[0] |
|
original_batch_idxs = ( |
|
original_batch_idxs.unsqueeze(-1).repeat((1, beam_size)).flatten().tolist() |
|
) |
|
|
|
mask = torch.full_like(x, -math.inf) |
|
for sent_i, (sent, batch_i) in enumerate( |
|
zip(prev_output_tokens, original_batch_idxs) |
|
): |
|
mask[sent_i, :, self.prefix_allowed_tokens_fn(batch_i, sent)] = 0 |
|
|
|
return mask |
|
|
|
@torch.jit.export |
|
def step( |
|
self, |
|
step: int, |
|
lprobs: Tensor, |
|
scores: Tensor, |
|
prev_output_tokens: Tensor, |
|
original_batch_idxs: Tensor, |
|
): |
|
bsz, beam_size, vocab_size = lprobs.size() |
|
|
|
lprobs += self.apply_mask( |
|
lprobs.view(bsz * beam_size, 1, vocab_size), |
|
prev_output_tokens, |
|
original_batch_idxs, |
|
).view(bsz, beam_size, vocab_size) |
|
|
|
if step == 0: |
|
|
|
|
|
lprobs = lprobs[:, ::beam_size, :].contiguous() |
|
else: |
|
|
|
assert scores is not None |
|
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) |
|
|
|
top_prediction = torch.topk( |
|
lprobs.view(bsz, -1), |
|
k=min( |
|
|
|
|
|
beam_size, |
|
lprobs.view(bsz, -1).size(1) - 1, |
|
), |
|
) |
|
scores_buf = top_prediction[0] |
|
indices_buf = top_prediction[1] |
|
beams_buf = indices_buf // vocab_size |
|
indices_buf = indices_buf.fmod(vocab_size) |
|
return scores_buf, indices_buf, beams_buf |
|
|
|
|
|
class LexicallyConstrainedBeamSearch(Search): |
|
"""Implements lexically constrained beam search as described in |
|
|
|
Fast Lexically Constrained Decoding with Dynamic Beam |
|
Allocation for Neural Machine Translation. Post & Vilar, |
|
NAACL 2018. https://www.aclweb.org/anthology/N18-1119/ |
|
|
|
and |
|
|
|
Improved Lexically Constrained Decoding for Translation and |
|
Monolingual Rewriting. Hu et al, NAACL |
|
2019. https://www.aclweb.org/anthology/N19-1090/ |
|
|
|
This is accomplished by maintaining, for each beam hypothesis, a |
|
ConstraintState object (see constraints.py) that tracks which |
|
constraints have been generated and using this information to |
|
shape the beam for each input sentence. |
|
""" |
|
|
|
def __init__(self, tgt_dict, representation): |
|
super().__init__(tgt_dict) |
|
self.representation = representation |
|
self.vocab_size = len(tgt_dict) |
|
self.num_cands = 0 |
|
self.supports_constraints = True |
|
|
|
@torch.jit.export |
|
def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): |
|
self.constraint_states = [] |
|
for constraint_tensor in batch_constraints: |
|
if self.representation == "ordered": |
|
constraint_state = OrderedConstraintState.create(constraint_tensor) |
|
elif self.representation == "unordered": |
|
constraint_state = UnorderedConstraintState.create(constraint_tensor) |
|
|
|
self.constraint_states.append([constraint_state for i in range(beam_size)]) |
|
|
|
@torch.jit.export |
|
def prune_sentences(self, batch_idxs: Tensor): |
|
self.constraint_states = [ |
|
self.constraint_states[i] for i in batch_idxs.tolist() |
|
] |
|
|
|
@torch.jit.export |
|
def update_constraints(self, active_hypos: Tensor): |
|
if self.constraint_states: |
|
batch_size = active_hypos.size(0) |
|
for sentid in range(batch_size): |
|
self.constraint_states[sentid] = [ |
|
self.constraint_states[sentid][i] for i in active_hypos[sentid] |
|
] |
|
|
|
@torch.jit.export |
|
def step( |
|
self, |
|
step: int, |
|
lprobs: Tensor, |
|
scores: Optional[Tensor], |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
""" |
|
A constrained step builds a large candidates list from the following: |
|
- the top 2 * {beam_size} items over the whole beam |
|
- for each item in the beam |
|
- the top {each_k} (default 1) |
|
- all next constraints |
|
We then compute the constrained state of each beam item, and assign |
|
stripe codes: 0 to the best in each bank, 1 to the 2nd-best, and so |
|
on. We then sort by (stripe, score), and truncate the list at |
|
2 * beam size. |
|
|
|
Args: |
|
step: the decoder step |
|
lprobs: (batch size, beam size, target vocab) |
|
the target-vocab distributions for each item in the beam. |
|
Retrun: A tuple of (scores, indices, beams, constraints) where: |
|
scores: (batch, output beam size) |
|
the scores of the chosen elements |
|
indices: (batch, output beam size) |
|
the target vocab indices of the chosen elements |
|
beams: (batch, output beam size) |
|
the 0-indexed hypothesis ids of the chosen elements |
|
constraints: (batch, output beam size) |
|
the new constraint states |
|
""" |
|
each_k = 1 |
|
device = lprobs.device |
|
|
|
batch_size, beam_size, vocab_size = lprobs.size() |
|
|
|
self.num_cands = min( |
|
|
|
|
|
beam_size * 2, |
|
lprobs.view(batch_size, -1).size(1) - 1, |
|
) |
|
|
|
|
|
constraint_states = self.constraint_states |
|
if constraint_states and step > 0: |
|
not_finished_indices = [] |
|
for sentno, sent_constraints in enumerate(constraint_states): |
|
for beamno, state in enumerate(sent_constraints): |
|
index = sentno * beam_size + beamno |
|
if not state.finished: |
|
not_finished_indices.append(index) |
|
not_finished_indices = torch.tensor(not_finished_indices) |
|
if not_finished_indices.numel() > 0: |
|
lprobs.view(batch_size * beam_size, -1)[ |
|
not_finished_indices, self.eos |
|
] = -math.inf |
|
|
|
if step == 0: |
|
|
|
|
|
lprobs = lprobs[:, ::beam_size, :].contiguous() |
|
else: |
|
|
|
assert scores is not None |
|
lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) |
|
|
|
top_prediction = torch.topk( |
|
lprobs.view(batch_size, -1), |
|
self.num_cands, |
|
) |
|
scores_buf, indices_buf = top_prediction |
|
|
|
beams_buf = indices_buf // vocab_size |
|
indices_buf = indices_buf.fmod(vocab_size) |
|
|
|
|
|
if not constraint_states: |
|
return scores_buf, indices_buf, beams_buf |
|
|
|
|
|
if step > 0: |
|
top_scores, top_indices = torch.topk( |
|
lprobs.view(batch_size * beam_size, -1), |
|
k=each_k, |
|
dim=1, |
|
) |
|
top_scores = top_scores.view(batch_size, -1) |
|
top_indices = top_indices.view(batch_size, -1) |
|
scores_buf = torch.cat((scores_buf, top_scores), dim=1) |
|
indices_buf = torch.cat((indices_buf, top_indices), dim=1) |
|
new_beams = torch.arange(0, beam_size, device=device).repeat(batch_size, 1) |
|
beams_buf = torch.cat((beams_buf, new_beams), dim=1) |
|
|
|
|
|
new_scores_buf = torch.zeros((batch_size, 2 * beam_size), device=device) |
|
new_indices_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long() |
|
new_beams_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long() |
|
for sentno, states in enumerate(constraint_states): |
|
scores, indices, beams, new_states = self.step_sentence( |
|
step, |
|
sentno, |
|
lprobs[sentno], |
|
constraint_states[sentno], |
|
beams_buf[sentno].clone(), |
|
indices_buf[sentno].clone(), |
|
scores_buf[sentno].clone(), |
|
) |
|
new_scores_buf[sentno] = scores |
|
new_indices_buf[sentno] = indices |
|
new_beams_buf[sentno] = beams |
|
self.constraint_states[sentno] = new_states |
|
|
|
return new_scores_buf, new_indices_buf, new_beams_buf |
|
|
|
@torch.jit.export |
|
def step_sentence( |
|
self, |
|
step: int, |
|
sentno: int, |
|
lprobs: Tensor, |
|
constraint_states: List[List[ConstraintState]], |
|
beams_buf: Tensor, |
|
indices_buf: Tensor, |
|
scores_buf: Tensor, |
|
): |
|
"""Does per-sentence processing. Adds all constraints for each |
|
hypothesis to the list of candidates; then removes duplicates, |
|
sorts, and dynamically stripes across the banks. All tensor inputs |
|
are collapsed to those pertaining to a single input sentence. |
|
""" |
|
device = lprobs.device |
|
|
|
|
|
for beamno, state in enumerate(constraint_states): |
|
next_tokens = torch.tensor(list(state.next_tokens()), device=device).long() |
|
if next_tokens.numel() != 0: |
|
indices_buf = torch.cat((indices_buf, next_tokens)) |
|
next_beams = ( |
|
torch.tensor(beamno, device=device) |
|
.repeat(next_tokens.size(0)) |
|
.long() |
|
) |
|
beams_buf = torch.cat((beams_buf, next_beams)) |
|
next_values = lprobs[beamno].take(next_tokens.view(-1)) |
|
scores_buf = torch.cat((scores_buf, next_values)) |
|
|
|
|
|
if step == 0: |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cands_size = indices_buf.size(0) |
|
constraint_states = [ |
|
constraint_states[beams_buf[i]].advance(indices_buf[i]) |
|
for i in range(cands_size) |
|
] |
|
|
|
banks = torch.tensor([state.bank for state in constraint_states], device=device) |
|
|
|
|
|
num_constraint_tokens = len(state.tokens) |
|
|
|
|
|
|
|
|
|
MAX_SCORE = -100 |
|
sort_key = (num_constraint_tokens - banks) * MAX_SCORE + scores_buf |
|
sort_values, sort_indices = sort_key.sort(dim=0, descending=True) |
|
scores_buf = scores_buf[sort_indices] |
|
indices_buf = indices_buf[sort_indices] |
|
beams_buf = beams_buf[sort_indices] |
|
banks = banks[sort_indices] |
|
|
|
|
|
constraint_states = [constraint_states[i] for i in sort_indices] |
|
|
|
|
|
|
|
|
|
|
|
def roll(t): |
|
"""Rolls a 1d tensor left by 1. |
|
|
|
[0, 1, 2, 3, 4] becomes [4, 0, 1, 2, 3] |
|
""" |
|
return torch.cat((t[-1].unsqueeze(0), t[0:-1]), dim=0) |
|
|
|
|
|
|
|
|
|
|
|
uniques_mask = beams_buf * (self.vocab_size + 1) + indices_buf |
|
uniques_mask = roll(uniques_mask) != uniques_mask |
|
|
|
|
|
scores_buf = torch.masked_select(scores_buf, uniques_mask) |
|
indices_buf = torch.masked_select(indices_buf, uniques_mask) |
|
beams_buf = torch.masked_select(beams_buf, uniques_mask) |
|
banks = torch.masked_select(banks, uniques_mask) |
|
i = 1 |
|
for mask in uniques_mask[1:]: |
|
if not mask: |
|
constraint_states.pop(i) |
|
i += mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stripe_offsets = [offset * (len(banks) + 1) for offset in range(len(banks) + 1)] |
|
stripes = torch.zeros_like(banks) |
|
cur_bank_count = -1 |
|
cur_bank = banks[0] |
|
for i, bank in enumerate(banks): |
|
if bank != cur_bank: |
|
cur_bank_count = 0 |
|
cur_bank = bank |
|
else: |
|
cur_bank_count += 1 |
|
stripes[i] = num_constraint_tokens - bank + stripe_offsets[cur_bank_count] |
|
|
|
|
|
sort_values, sort_indices = stripes.sort(dim=0) |
|
scores_buf = scores_buf[sort_indices] |
|
indices_buf = indices_buf[sort_indices] |
|
beams_buf = beams_buf[sort_indices] |
|
constraint_states = [constraint_states[i] for i in sort_indices] |
|
|
|
|
|
scores_buf = scores_buf[: self.num_cands] |
|
indices_buf = indices_buf[: self.num_cands] |
|
beams_buf = beams_buf[: self.num_cands] |
|
|
|
return scores_buf, indices_buf, beams_buf, constraint_states |
|
|
|
|
|
class LengthConstrainedBeamSearch(Search): |
|
def __init__(self, tgt_dict, min_len_a, min_len_b, max_len_a, max_len_b): |
|
super().__init__(tgt_dict) |
|
self.min_len_a = min_len_a |
|
self.min_len_b = min_len_b |
|
self.max_len_a = max_len_a |
|
self.max_len_b = max_len_b |
|
self.beam = BeamSearch(tgt_dict) |
|
self.needs_src_lengths = True |
|
|
|
def step( |
|
self, |
|
step: int, |
|
lprobs, |
|
scores, |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
min_lens = self.min_len_a * self.src_lengths + self.min_len_b |
|
max_lens = self.max_len_a * self.src_lengths + self.max_len_b |
|
lprobs[step < min_lens, :, self.eos] = -math.inf |
|
lprobs[step >= max_lens, :, self.eos] = 0 |
|
return self.beam.step(step, lprobs, scores) |
|
|
|
|
|
class DiverseBeamSearch(Search): |
|
"""Diverse Beam Search. |
|
|
|
See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence |
|
Models" for details. |
|
|
|
We only implement the Hamming Diversity penalty here, which performed best |
|
in the original paper. |
|
""" |
|
|
|
def __init__(self, tgt_dict, num_groups, diversity_strength): |
|
super().__init__(tgt_dict) |
|
self.num_groups = num_groups |
|
self.diversity_strength = -diversity_strength |
|
self.beam = BeamSearch(tgt_dict) |
|
|
|
@torch.jit.export |
|
def step( |
|
self, |
|
step: int, |
|
lprobs, |
|
scores, |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
bsz, beam_size, vocab_size = lprobs.size() |
|
if beam_size % self.num_groups != 0: |
|
raise ValueError( |
|
"DiverseBeamSearch requires --beam to be divisible by the number of groups" |
|
) |
|
|
|
|
|
diversity_buf = torch.zeros(lprobs[:, 0, :].size()).to(lprobs) |
|
|
|
scores_G, indices_G, beams_G = [], [], [] |
|
for g in range(self.num_groups): |
|
lprobs_g = lprobs[:, g :: self.num_groups, :] |
|
scores_g = scores[:, g :: self.num_groups, :] if step > 0 else None |
|
|
|
|
|
if g > 0: |
|
lprobs_g = torch.add( |
|
lprobs_g, |
|
other=diversity_buf.unsqueeze(1), |
|
alpha=self.diversity_strength, |
|
) |
|
else: |
|
lprobs_g = lprobs_g.contiguous() |
|
|
|
scores_buf, indices_buf, beams_buf = self.beam.step( |
|
step, lprobs_g, scores_g |
|
) |
|
beams_buf.mul_(self.num_groups).add_(g) |
|
|
|
scores_G.append(scores_buf.clone()) |
|
indices_G.append(indices_buf.clone()) |
|
beams_G.append(beams_buf.clone()) |
|
|
|
|
|
diversity_buf.scatter_add_( |
|
1, indices_buf, torch.ones(indices_buf.size()).to(diversity_buf) |
|
) |
|
|
|
|
|
scores_buf = torch.stack(scores_G, dim=2).view(bsz, -1) |
|
indices_buf = torch.stack(indices_G, dim=2).view(bsz, -1) |
|
beams_buf = torch.stack(beams_G, dim=2).view(bsz, -1) |
|
return scores_buf, indices_buf, beams_buf |
|
|
|
|
|
class Sampling(Search): |
|
sampling_topk: int |
|
sampling_topp: float |
|
|
|
def __init__(self, tgt_dict, sampling_topk=-1, sampling_topp=-1.0): |
|
super().__init__(tgt_dict) |
|
self.sampling_topk = sampling_topk |
|
self.sampling_topp = sampling_topp |
|
|
|
def _sample_topp(self, lprobs): |
|
"""Sample among the smallest set of elements whose cumulative probability mass exceeds p. |
|
|
|
See `"The Curious Case of Neural Text Degeneration" |
|
(Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_. |
|
|
|
Args: |
|
lprobs: (bsz x input_beam_size x vocab_size) |
|
the model's log-probabilities over the vocabulary at the current step |
|
|
|
Return: A tuple of (trimed_probs, truncated_indices) where: |
|
trimed_probs: (bsz x input_beam_size x ?) |
|
the model's probabilities over the elements selected to sample from. The |
|
width of the third dimension is determined by top-P. |
|
truncated_indices: (bsz x input_beam_size x ?) |
|
the indices of the chosen elements. |
|
""" |
|
probs = lprobs.exp_() |
|
|
|
|
|
sorted_probs, sorted_indices = probs.sort(descending=True) |
|
|
|
|
|
cumsum_probs = sorted_probs.cumsum(dim=2) |
|
mask = cumsum_probs.lt(self.sampling_topp) |
|
|
|
|
|
|
|
cumsum_mask = mask.cumsum(dim=2) |
|
last_included = cumsum_mask[:, :, -1:] |
|
last_included.clamp_(0, mask.size()[2] - 1) |
|
mask = mask.scatter_(2, last_included, 1) |
|
|
|
|
|
max_dim = last_included.max() |
|
truncated_mask = mask[:, :, : max_dim + 1] |
|
truncated_probs = sorted_probs[:, :, : max_dim + 1] |
|
truncated_indices = sorted_indices[:, :, : max_dim + 1] |
|
|
|
|
|
|
|
trim_mask = ~truncated_mask |
|
trimed_probs = truncated_probs.masked_fill_(trim_mask, 0) |
|
return trimed_probs, truncated_indices |
|
|
|
@torch.jit.export |
|
def step( |
|
self, |
|
step: int, |
|
lprobs, |
|
scores, |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
bsz, beam_size, vocab_size = lprobs.size() |
|
|
|
if step == 0: |
|
|
|
|
|
lprobs = lprobs[:, ::beam_size, :].contiguous() |
|
|
|
if self.sampling_topp > 0: |
|
|
|
probs, top_indices = self._sample_topp(lprobs) |
|
elif self.sampling_topk > 0: |
|
|
|
lprobs, top_indices = lprobs.topk(self.sampling_topk) |
|
probs = lprobs.exp_() |
|
else: |
|
probs = lprobs.exp_() |
|
|
|
|
|
top_indices = torch.empty(0).to(probs) |
|
|
|
if step == 0: |
|
indices_buf = torch.multinomial( |
|
probs.view(bsz, -1), |
|
beam_size, |
|
replacement=True, |
|
).view(bsz, beam_size) |
|
else: |
|
indices_buf = torch.multinomial( |
|
probs.view(bsz * beam_size, -1), |
|
1, |
|
replacement=True, |
|
).view(bsz, beam_size) |
|
|
|
if step == 0: |
|
|
|
probs = probs.expand(bsz, beam_size, -1) |
|
|
|
|
|
scores_buf = torch.gather(probs, dim=2, index=indices_buf.unsqueeze(-1)) |
|
scores_buf = scores_buf.log_().view(bsz, -1) |
|
|
|
|
|
if self.sampling_topk > 0 or self.sampling_topp > 0: |
|
indices_buf = torch.gather( |
|
top_indices.expand(bsz, beam_size, -1), |
|
dim=2, |
|
index=indices_buf.unsqueeze(-1), |
|
).squeeze(2) |
|
|
|
if step == 0: |
|
beams_buf = indices_buf.new_zeros(bsz, beam_size) |
|
else: |
|
beams_buf = torch.arange(0, beam_size).to(indices_buf).repeat(bsz, 1) |
|
|
|
scores_buf.add_( |
|
torch.gather(scores[:, :, step - 1], dim=1, index=beams_buf) |
|
) |
|
|
|
return scores_buf, indices_buf, beams_buf |
|
|
|
|
|
class DiverseSiblingsSearch(Search): |
|
""" |
|
Beam search with diverse siblings. |
|
|
|
See "A Simple, Fast Diverse Decoding Algorithm for Neural Generation" for details. |
|
https://arxiv.org/abs/1611.08562 |
|
|
|
1/ Calculate hypotheses for each beam |
|
2/ Intra-sibling ordering |
|
3/ Rewrite scores |
|
4/ Choose top K hypotheses |
|
|
|
if diversity_rate == 0 is equivalent to BeamSearch |
|
""" |
|
|
|
def __init__(self, tgt_dict, diversity_rate): |
|
super().__init__(tgt_dict) |
|
self.diversity_rate = diversity_rate |
|
self.beam = BeamSearch(tgt_dict) |
|
|
|
def step( |
|
self, |
|
step: int, |
|
lprobs, |
|
scores, |
|
prev_output_tokens: Optional[Tensor] = None, |
|
original_batch_idxs: Optional[Tensor] = None, |
|
): |
|
bsz, beam_size, vocab_size = lprobs.size() |
|
k = min( |
|
|
|
|
|
beam_size * 2, |
|
lprobs.view(bsz, -1).size(1) - 1, |
|
) |
|
s_list: List[Tensor] |
|
i_list: List[Tensor] |
|
s_list = [torch.empty(0).to(lprobs) for i in range(beam_size)] |
|
i_list = [torch.LongTensor().to(device=lprobs.device) for i in range(beam_size)] |
|
sibling_score = torch.arange(1, k + 1).to(lprobs) * self.diversity_rate |
|
|
|
if step == 0: |
|
return self.beam.step(step, lprobs, scores) |
|
lprobs.add_(scores[:, :, step - 1].unsqueeze(-1)) |
|
|
|
|
|
for i in range(beam_size): |
|
torch.topk(lprobs[:, i, :].view(bsz, -1), k, out=(s_list[i], i_list[i])) |
|
i_list[i].fmod_(vocab_size) |
|
|
|
|
|
s_list[i].sub_(sibling_score) |
|
|
|
|
|
indices = torch.stack(i_list, dim=1).view(bsz, -1) |
|
|
|
final_scores = torch.empty(0).to(lprobs) |
|
final_indices = torch.LongTensor().to(device=lprobs.device) |
|
final_beams = torch.LongTensor().to(device=lprobs.device) |
|
(final_scores, final_indices) = torch.topk( |
|
torch.stack(s_list, dim=1).view(bsz, -1), |
|
k, |
|
) |
|
|
|
final_beams = final_indices // k |
|
|
|
for i in range(bsz): |
|
final_indices[i] = indices[i][final_indices[i]] |
|
|
|
return final_scores, final_indices, final_beams |
|
|