|
|
|
|
|
|
|
|
|
|
|
import math |
|
import sys |
|
from typing import Dict, List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
from fairseq import search, utils |
|
from fairseq.data import data_utils |
|
from fairseq.models import FairseqIncrementalDecoder |
|
from fairseq.ngram_repeat_block import NGramRepeatBlock |
|
|
|
|
|
class SequenceGenerator(nn.Module): |
|
def __init__( |
|
self, |
|
models, |
|
tgt_dict, |
|
beam_size=1, |
|
max_len_a=0, |
|
max_len_b=200, |
|
max_len=0, |
|
min_len=1, |
|
normalize_scores=True, |
|
len_penalty=1.0, |
|
unk_penalty=0.0, |
|
temperature=1.0, |
|
match_source_len=False, |
|
no_repeat_ngram_size=0, |
|
search_strategy=None, |
|
eos=None, |
|
symbols_to_strip_from_output=None, |
|
lm_model=None, |
|
lm_weight=1.0, |
|
tokens_to_suppress=(), |
|
): |
|
"""Generates translations of a given source sentence. |
|
|
|
Args: |
|
models (List[~fairseq.models.FairseqModel]): ensemble of models, |
|
currently support fairseq.models.TransformerModel for scripting |
|
beam_size (int, optional): beam width (default: 1) |
|
max_len_a/b (int, optional): generate sequences of maximum length |
|
ax + b, where x is the source length |
|
max_len (int, optional): the maximum length of the generated output |
|
(not including end-of-sentence) |
|
min_len (int, optional): the minimum length of the generated output |
|
(not including end-of-sentence) |
|
normalize_scores (bool, optional): normalize scores by the length |
|
of the output (default: True) |
|
len_penalty (float, optional): length penalty, where <1.0 favors |
|
shorter, >1.0 favors longer sentences (default: 1.0) |
|
unk_penalty (float, optional): unknown word penalty, where <0 |
|
produces more unks, >0 produces fewer (default: 0.0) |
|
temperature (float, optional): temperature, where values |
|
>1.0 produce more uniform samples and values <1.0 produce |
|
sharper samples (default: 1.0) |
|
match_source_len (bool, optional): outputs should match the source |
|
length (default: False) |
|
""" |
|
super().__init__() |
|
if isinstance(models, EnsembleModel): |
|
self.model = models |
|
else: |
|
self.model = EnsembleModel(models) |
|
self.tgt_dict = tgt_dict |
|
self.pad = tgt_dict.pad() |
|
self.unk = tgt_dict.unk() |
|
self.eos = tgt_dict.eos() if eos is None else eos |
|
self.symbols_to_strip_from_output = ( |
|
symbols_to_strip_from_output.union({self.eos}) |
|
if symbols_to_strip_from_output is not None |
|
else {self.eos} |
|
) |
|
|
|
self.token_indices_to_suppress: Optional[Tensor] = None |
|
token_indices_to_suppress = [] |
|
for token_string in tokens_to_suppress: |
|
token_index = tgt_dict.index(token_string) |
|
assert token_index != self.unk |
|
token_indices_to_suppress.append(token_index) |
|
if len(token_indices_to_suppress) > 0: |
|
self.token_indices_to_suppress = torch.Tensor( |
|
token_indices_to_suppress |
|
).long() |
|
|
|
self.vocab_size = len(tgt_dict) |
|
self.beam_size = beam_size |
|
|
|
self.beam_size = min(beam_size, self.vocab_size - 1) |
|
self.model.set_decoder_beam_size(self.beam_size) |
|
self.max_len_a = max_len_a |
|
self.max_len_b = max_len_b |
|
self.min_len = min_len |
|
self.max_len = max_len or self.model.max_decoder_positions() |
|
|
|
self.normalize_scores = normalize_scores |
|
self.len_penalty = len_penalty |
|
self.unk_penalty = unk_penalty |
|
self.temperature = temperature |
|
self.match_source_len = match_source_len |
|
|
|
if no_repeat_ngram_size > 0: |
|
self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) |
|
else: |
|
self.repeat_ngram_blocker = None |
|
|
|
assert temperature > 0, "--temperature must be greater than 0" |
|
|
|
self.search = ( |
|
search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy |
|
) |
|
|
|
|
|
|
|
self.should_set_src_lengths = ( |
|
hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths |
|
) |
|
|
|
self.model.eval() |
|
|
|
self.lm_model = lm_model |
|
self.lm_weight = lm_weight |
|
if self.lm_model is not None: |
|
self.lm_model.eval() |
|
|
|
def cuda(self): |
|
self.model.cuda() |
|
return self |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
sample: Dict[str, Dict[str, Tensor]], |
|
prefix_tokens: Optional[Tensor] = None, |
|
bos_token: Optional[int] = None, |
|
): |
|
"""Generate a batch of translations. |
|
|
|
Args: |
|
sample (dict): batch |
|
prefix_tokens (torch.LongTensor, optional): force decoder to begin |
|
with these tokens |
|
bos_token (int, optional): beginning of sentence token |
|
(default: self.eos) |
|
""" |
|
return self._generate(sample, prefix_tokens, bos_token=bos_token) |
|
|
|
|
|
def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): |
|
"""Iterate over a batched dataset and yield individual translations. |
|
Args: |
|
cuda (bool, optional): use GPU for generation |
|
timer (StopwatchMeter, optional): time generations |
|
""" |
|
for sample in data_itr: |
|
s = utils.move_to_cuda(sample) if cuda else sample |
|
if "net_input" not in s: |
|
continue |
|
input = s["net_input"] |
|
|
|
|
|
encoder_input = { |
|
k: v for k, v in input.items() if k != "prev_output_tokens" |
|
} |
|
if timer is not None: |
|
timer.start() |
|
with torch.no_grad(): |
|
hypos = self.generate(encoder_input) |
|
if timer is not None: |
|
timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) |
|
for i, id in enumerate(s["id"].data): |
|
|
|
src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) |
|
ref = ( |
|
utils.strip_pad(s["target"].data[i, :], self.pad) |
|
if s["target"] is not None |
|
else None |
|
) |
|
yield id, src, ref, hypos[i] |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs |
|
) -> List[List[Dict[str, Tensor]]]: |
|
"""Generate translations. Match the api of other fairseq generators. |
|
|
|
Args: |
|
models (List[~fairseq.models.FairseqModel]): ensemble of models |
|
sample (dict): batch |
|
prefix_tokens (torch.LongTensor, optional): force decoder to begin |
|
with these tokens |
|
constraints (torch.LongTensor, optional): force decoder to include |
|
the list of constraints |
|
bos_token (int, optional): beginning of sentence token |
|
(default: self.eos) |
|
""" |
|
return self._generate(sample, **kwargs) |
|
|
|
def _generate( |
|
self, |
|
sample: Dict[str, Dict[str, Tensor]], |
|
prefix_tokens: Optional[Tensor] = None, |
|
constraints: Optional[Tensor] = None, |
|
bos_token: Optional[int] = None, |
|
): |
|
incremental_states = torch.jit.annotate( |
|
List[Dict[str, Dict[str, Optional[Tensor]]]], |
|
[ |
|
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) |
|
for i in range(self.model.models_size) |
|
], |
|
) |
|
net_input = sample["net_input"] |
|
|
|
if "src_tokens" in net_input: |
|
src_tokens = net_input["src_tokens"] |
|
|
|
|
|
if "src_lengths" in net_input: |
|
src_lengths = net_input["src_lengths"] |
|
else: |
|
src_lengths = ( |
|
(src_tokens.ne(self.eos) & src_tokens.ne(self.pad)) |
|
.long() |
|
.sum(dim=1) |
|
) |
|
elif "source" in net_input: |
|
src_tokens = net_input["source"] |
|
src_lengths = ( |
|
net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) |
|
if net_input["padding_mask"] is not None |
|
else torch.tensor(src_tokens.size(-1)).to(src_tokens) |
|
) |
|
elif "features" in net_input: |
|
src_tokens = net_input["features"] |
|
src_lengths = ( |
|
net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) |
|
if net_input["padding_mask"] is not None |
|
else torch.tensor(src_tokens.size(-1)).to(src_tokens) |
|
) |
|
else: |
|
raise Exception( |
|
"expected src_tokens or source in net input. input keys: " |
|
+ str(net_input.keys()) |
|
) |
|
|
|
|
|
|
|
bsz, src_len = src_tokens.size()[:2] |
|
beam_size = self.beam_size |
|
|
|
if constraints is not None and not self.search.supports_constraints: |
|
raise NotImplementedError( |
|
"Target-side constraints were provided, but search method doesn't support them" |
|
) |
|
|
|
|
|
self.search.init_constraints(constraints, beam_size) |
|
|
|
max_len: int = -1 |
|
if self.match_source_len: |
|
max_len = src_lengths.max().item() |
|
else: |
|
max_len = min( |
|
int(self.max_len_a * src_len + self.max_len_b), |
|
self.max_len - 1, |
|
) |
|
assert ( |
|
self.min_len <= max_len |
|
), "min_len cannot be larger than max_len, please adjust these!" |
|
|
|
with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"): |
|
encoder_outs = self.model.forward_encoder(net_input) |
|
|
|
|
|
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) |
|
new_order = new_order.to(src_tokens.device).long() |
|
encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) |
|
|
|
assert encoder_outs is not None |
|
|
|
|
|
scores = ( |
|
torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() |
|
) |
|
tokens = ( |
|
torch.zeros(bsz * beam_size, max_len + 2) |
|
.to(src_tokens) |
|
.long() |
|
.fill_(self.pad) |
|
) |
|
tokens[:, 0] = self.eos if bos_token is None else bos_token |
|
attn: Optional[Tensor] = None |
|
|
|
|
|
|
|
|
|
|
|
cands_to_ignore = ( |
|
torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) |
|
) |
|
|
|
|
|
finalized = torch.jit.annotate( |
|
List[List[Dict[str, Tensor]]], |
|
[torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], |
|
) |
|
|
|
|
|
finished = [False for i in range(bsz)] |
|
num_remaining_sent = bsz |
|
|
|
|
|
cand_size = 2 * beam_size |
|
|
|
|
|
bbsz_offsets = ( |
|
(torch.arange(0, bsz) * beam_size) |
|
.unsqueeze(1) |
|
.type_as(tokens) |
|
.to(src_tokens.device) |
|
) |
|
cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) |
|
|
|
reorder_state: Optional[Tensor] = None |
|
batch_idxs: Optional[Tensor] = None |
|
|
|
original_batch_idxs: Optional[Tensor] = None |
|
if "id" in sample and isinstance(sample["id"], Tensor): |
|
original_batch_idxs = sample["id"] |
|
else: |
|
original_batch_idxs = torch.arange(0, bsz).type_as(tokens) |
|
|
|
for step in range(max_len + 1): |
|
|
|
if reorder_state is not None: |
|
if batch_idxs is not None: |
|
|
|
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( |
|
batch_idxs |
|
) |
|
reorder_state.view(-1, beam_size).add_( |
|
corr.unsqueeze(-1) * beam_size |
|
) |
|
original_batch_idxs = original_batch_idxs[batch_idxs] |
|
self.model.reorder_incremental_state(incremental_states, reorder_state) |
|
encoder_outs = self.model.reorder_encoder_out( |
|
encoder_outs, reorder_state |
|
) |
|
with torch.autograd.profiler.record_function( |
|
"EnsembleModel: forward_decoder" |
|
): |
|
lprobs, avg_attn_scores = self.model.forward_decoder( |
|
tokens[:, : step + 1], |
|
encoder_outs, |
|
incremental_states, |
|
self.temperature, |
|
) |
|
|
|
if self.lm_model is not None: |
|
lm_out = self.lm_model(tokens[:, : step + 1]) |
|
probs = self.lm_model.get_normalized_probs( |
|
lm_out, log_probs=True, sample=None |
|
) |
|
probs = probs[:, -1, :] * self.lm_weight |
|
lprobs += probs |
|
|
|
lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) |
|
|
|
lprobs[:, self.pad] = -math.inf |
|
lprobs[:, self.unk] -= self.unk_penalty |
|
|
|
|
|
if step >= max_len: |
|
lprobs[:, : self.eos] = -math.inf |
|
lprobs[:, self.eos + 1 :] = -math.inf |
|
|
|
|
|
if ( |
|
prefix_tokens is not None |
|
and step < prefix_tokens.size(1) |
|
and step < max_len |
|
): |
|
lprobs, tokens, scores = self._prefix_tokens( |
|
step, lprobs, scores, tokens, prefix_tokens, beam_size |
|
) |
|
else: |
|
if step < self.min_len: |
|
|
|
lprobs[:, self.eos] = -math.inf |
|
|
|
if self.token_indices_to_suppress is not None: |
|
lprobs[:, self.token_indices_to_suppress] = -math.inf |
|
|
|
|
|
if avg_attn_scores is not None: |
|
if attn is None: |
|
attn = torch.empty( |
|
bsz * beam_size, avg_attn_scores.size(1), max_len + 2 |
|
).to(scores) |
|
attn[:, :, step + 1].copy_(avg_attn_scores) |
|
|
|
scores = scores.type_as(lprobs) |
|
eos_bbsz_idx = torch.empty(0).to( |
|
tokens |
|
) |
|
eos_scores = torch.empty(0).to( |
|
scores |
|
) |
|
|
|
if self.should_set_src_lengths: |
|
self.search.set_src_lengths(src_lengths) |
|
|
|
if self.repeat_ngram_blocker is not None: |
|
lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) |
|
|
|
|
|
cand_scores, cand_indices, cand_beams = self.search.step( |
|
step, |
|
lprobs.view(bsz, -1, self.vocab_size), |
|
scores.view(bsz, beam_size, -1)[:, :, :step], |
|
tokens[:, : step + 1], |
|
original_batch_idxs, |
|
) |
|
|
|
|
|
|
|
|
|
cand_bbsz_idx = cand_beams.add(bbsz_offsets) |
|
|
|
|
|
|
|
eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) |
|
eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) |
|
|
|
|
|
|
|
|
|
eos_bbsz_idx = torch.masked_select( |
|
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] |
|
) |
|
|
|
finalized_sents: List[int] = [] |
|
if eos_bbsz_idx.numel() > 0: |
|
eos_scores = torch.masked_select( |
|
cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] |
|
) |
|
|
|
finalized_sents = self.finalize_hypos( |
|
step, |
|
eos_bbsz_idx, |
|
eos_scores, |
|
tokens, |
|
scores, |
|
finalized, |
|
finished, |
|
beam_size, |
|
attn, |
|
src_lengths, |
|
max_len, |
|
) |
|
num_remaining_sent -= len(finalized_sents) |
|
|
|
assert num_remaining_sent >= 0 |
|
if num_remaining_sent == 0: |
|
break |
|
if self.search.stop_on_max_len and step >= max_len: |
|
break |
|
assert step < max_len, f"{step} < {max_len}" |
|
|
|
|
|
|
|
if len(finalized_sents) > 0: |
|
new_bsz = bsz - len(finalized_sents) |
|
|
|
|
|
batch_mask = torch.ones( |
|
bsz, dtype=torch.bool, device=cand_indices.device |
|
) |
|
batch_mask[finalized_sents] = False |
|
|
|
batch_idxs = torch.arange( |
|
bsz, device=cand_indices.device |
|
).masked_select(batch_mask) |
|
|
|
|
|
self.search.prune_sentences(batch_idxs) |
|
|
|
eos_mask = eos_mask[batch_idxs] |
|
cand_beams = cand_beams[batch_idxs] |
|
bbsz_offsets.resize_(new_bsz, 1) |
|
cand_bbsz_idx = cand_beams.add(bbsz_offsets) |
|
cand_scores = cand_scores[batch_idxs] |
|
cand_indices = cand_indices[batch_idxs] |
|
|
|
if prefix_tokens is not None: |
|
prefix_tokens = prefix_tokens[batch_idxs] |
|
src_lengths = src_lengths[batch_idxs] |
|
cands_to_ignore = cands_to_ignore[batch_idxs] |
|
|
|
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) |
|
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) |
|
if attn is not None: |
|
attn = attn.view(bsz, -1)[batch_idxs].view( |
|
new_bsz * beam_size, attn.size(1), -1 |
|
) |
|
bsz = new_bsz |
|
else: |
|
batch_idxs = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) |
|
active_mask = torch.add( |
|
eos_mask.type_as(cand_offsets) * cand_size, |
|
cand_offsets[: eos_mask.size(1)], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_cands_to_ignore, active_hypos = torch.topk( |
|
active_mask, k=beam_size, dim=1, largest=False |
|
) |
|
|
|
|
|
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] |
|
|
|
assert (~cands_to_ignore).any(dim=1).all() |
|
|
|
|
|
|
|
|
|
|
|
active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) |
|
active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) |
|
|
|
active_bbsz_idx = active_bbsz_idx.view(-1) |
|
active_scores = active_scores.view(-1) |
|
|
|
|
|
|
|
|
|
tokens[:, : step + 1] = torch.index_select( |
|
tokens[:, : step + 1], dim=0, index=active_bbsz_idx |
|
) |
|
|
|
tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( |
|
cand_indices, dim=1, index=active_hypos |
|
) |
|
if step > 0: |
|
scores[:, :step] = torch.index_select( |
|
scores[:, :step], dim=0, index=active_bbsz_idx |
|
) |
|
scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( |
|
cand_scores, dim=1, index=active_hypos |
|
) |
|
|
|
|
|
self.search.update_constraints(active_hypos) |
|
|
|
|
|
if attn is not None: |
|
attn[:, :, : step + 2] = torch.index_select( |
|
attn[:, :, : step + 2], dim=0, index=active_bbsz_idx |
|
) |
|
|
|
|
|
reorder_state = active_bbsz_idx |
|
|
|
|
|
for sent in range(len(finalized)): |
|
scores = torch.tensor( |
|
[float(elem["score"].item()) for elem in finalized[sent]] |
|
) |
|
_, sorted_scores_indices = torch.sort(scores, descending=True) |
|
finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] |
|
finalized[sent] = torch.jit.annotate( |
|
List[Dict[str, Tensor]], finalized[sent] |
|
) |
|
return finalized |
|
|
|
def _prefix_tokens( |
|
self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int |
|
): |
|
"""Handle prefix tokens""" |
|
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) |
|
prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) |
|
prefix_mask = prefix_toks.ne(self.pad) |
|
lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) |
|
lprobs[prefix_mask] = lprobs[prefix_mask].scatter( |
|
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] |
|
) |
|
|
|
|
|
eos_mask = prefix_toks.eq(self.eos) |
|
if eos_mask.any(): |
|
|
|
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ |
|
:, 0, 1 : step + 1 |
|
] |
|
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] |
|
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] |
|
assert (first_beam == target_prefix).all() |
|
|
|
|
|
tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) |
|
scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) |
|
lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) |
|
return lprobs, tokens, scores |
|
|
|
def replicate_first_beam(self, tensor, mask, beam_size: int): |
|
tensor = tensor.view(-1, beam_size, tensor.size(-1)) |
|
tensor[mask] = tensor[mask][:, :1, :] |
|
return tensor.view(-1, tensor.size(-1)) |
|
|
|
def finalize_hypos( |
|
self, |
|
step: int, |
|
bbsz_idx, |
|
eos_scores, |
|
tokens, |
|
scores, |
|
finalized: List[List[Dict[str, Tensor]]], |
|
finished: List[bool], |
|
beam_size: int, |
|
attn: Optional[Tensor], |
|
src_lengths, |
|
max_len: int, |
|
): |
|
"""Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. |
|
A sentence is finalized when {beam_size} finished items have been collected for it. |
|
|
|
Returns number of sentences (not beam items) being finalized. |
|
These will be removed from the batch and not processed further. |
|
Args: |
|
bbsz_idx (Tensor): |
|
""" |
|
assert bbsz_idx.numel() == eos_scores.numel() |
|
|
|
|
|
|
|
|
|
tokens_clone = tokens.index_select(0, bbsz_idx)[ |
|
:, 1 : step + 2 |
|
] |
|
|
|
tokens_clone[:, step] = self.eos |
|
attn_clone = ( |
|
attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] |
|
if attn is not None |
|
else None |
|
) |
|
|
|
|
|
pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] |
|
pos_scores[:, step] = eos_scores |
|
|
|
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] |
|
|
|
|
|
if self.normalize_scores: |
|
eos_scores /= (step + 1) ** self.len_penalty |
|
|
|
|
|
|
|
|
|
|
|
cum_unfin: List[int] = [] |
|
prev = 0 |
|
for f in finished: |
|
if f: |
|
prev += 1 |
|
else: |
|
cum_unfin.append(prev) |
|
cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx) |
|
|
|
unfin_idx = torch.div(bbsz_idx, beam_size, rounding_mode="trunc") |
|
sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seen = (sent << 32) + unfin_idx |
|
unique_seen: List[int] = torch.unique(seen).tolist() |
|
|
|
if self.match_source_len: |
|
condition = step > torch.index_select(src_lengths, 0, unfin_idx) |
|
eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores) |
|
sent_list: List[int] = sent.tolist() |
|
for i in range(bbsz_idx.size()[0]): |
|
|
|
|
|
if len(finalized[sent_list[i]]) < beam_size: |
|
if attn_clone is not None: |
|
|
|
hypo_attn = attn_clone[i] |
|
else: |
|
hypo_attn = torch.empty(0) |
|
|
|
finalized[sent_list[i]].append( |
|
{ |
|
"tokens": tokens_clone[i], |
|
"score": eos_scores[i], |
|
"attention": hypo_attn, |
|
"alignment": torch.empty(0), |
|
"positional_scores": pos_scores[i], |
|
} |
|
) |
|
|
|
newly_finished: List[int] = [] |
|
for unique_s in unique_seen: |
|
|
|
unique_sent: int = unique_s >> 32 |
|
unique_unfin_idx: int = unique_s - (unique_sent << 32) |
|
|
|
if not finished[unique_sent] and self.is_finished( |
|
step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size |
|
): |
|
finished[unique_sent] = True |
|
newly_finished.append(unique_unfin_idx) |
|
|
|
return newly_finished |
|
|
|
def is_finished( |
|
self, |
|
step: int, |
|
unfin_idx: int, |
|
max_len: int, |
|
finalized_sent_len: int, |
|
beam_size: int, |
|
): |
|
""" |
|
Check whether decoding for a sentence is finished, which |
|
occurs when the list of finalized sentences has reached the |
|
beam size, or when we reach the maximum length. |
|
""" |
|
assert finalized_sent_len <= beam_size |
|
if finalized_sent_len == beam_size or step == max_len: |
|
return True |
|
return False |
|
|
|
|
|
class EnsembleModel(nn.Module): |
|
"""A wrapper around an ensemble of models.""" |
|
|
|
def __init__(self, models): |
|
super().__init__() |
|
self.models_size = len(models) |
|
|
|
self.single_model = models[0] |
|
self.models = nn.ModuleList(models) |
|
|
|
self.has_incremental: bool = False |
|
if all( |
|
hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) |
|
for m in models |
|
): |
|
self.has_incremental = True |
|
|
|
def forward(self): |
|
pass |
|
|
|
def has_encoder(self): |
|
return hasattr(self.single_model, "encoder") |
|
|
|
def has_incremental_states(self): |
|
return self.has_incremental |
|
|
|
def max_decoder_positions(self): |
|
return min( |
|
[ |
|
m.max_decoder_positions() |
|
for m in self.models |
|
if hasattr(m, "max_decoder_positions") |
|
] |
|
+ [sys.maxsize] |
|
) |
|
|
|
def set_decoder_beam_size(self, beam_size): |
|
"""Set beam size for efficient beamable enc-dec attention.""" |
|
if beam_size > 1: |
|
for model in self.models: |
|
if hasattr(model, "set_beam_size"): |
|
model.set_beam_size(beam_size) |
|
|
|
@torch.jit.export |
|
def forward_encoder(self, net_input: Dict[str, Tensor]): |
|
if not self.has_encoder(): |
|
return None |
|
return [model.encoder.forward_torchscript(net_input) for model in self.models] |
|
|
|
@torch.jit.export |
|
def forward_decoder( |
|
self, |
|
tokens, |
|
encoder_outs: List[Dict[str, List[Tensor]]], |
|
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], |
|
temperature: float = 1.0, |
|
): |
|
log_probs = [] |
|
avg_attn: Optional[Tensor] = None |
|
encoder_out: Optional[Dict[str, List[Tensor]]] = None |
|
for i, model in enumerate(self.models): |
|
if self.has_encoder(): |
|
encoder_out = encoder_outs[i] |
|
|
|
if self.has_incremental_states(): |
|
decoder_out = model.decoder.forward( |
|
tokens, |
|
encoder_out=encoder_out, |
|
incremental_state=incremental_states[i], |
|
) |
|
else: |
|
if hasattr(model, "decoder"): |
|
decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) |
|
else: |
|
decoder_out = model.forward(tokens) |
|
|
|
attn: Optional[Tensor] = None |
|
decoder_len = len(decoder_out) |
|
if decoder_len > 1 and decoder_out[1] is not None: |
|
if isinstance(decoder_out[1], Tensor): |
|
attn = decoder_out[1] |
|
else: |
|
attn_holder = decoder_out[1]["attn"] |
|
if isinstance(attn_holder, Tensor): |
|
attn = attn_holder |
|
elif attn_holder is not None: |
|
attn = attn_holder[0] |
|
if attn is not None: |
|
attn = attn[:, -1, :] |
|
|
|
decoder_out_tuple = ( |
|
decoder_out[0][:, -1:, :].div_(temperature), |
|
None if decoder_len <= 1 else decoder_out[1], |
|
) |
|
probs = model.get_normalized_probs( |
|
decoder_out_tuple, log_probs=True, sample=None |
|
) |
|
probs = probs[:, -1, :] |
|
if self.models_size == 1: |
|
return probs, attn |
|
|
|
log_probs.append(probs) |
|
if attn is not None: |
|
if avg_attn is None: |
|
avg_attn = attn |
|
else: |
|
avg_attn.add_(attn) |
|
|
|
avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( |
|
self.models_size |
|
) |
|
|
|
if avg_attn is not None: |
|
avg_attn.div_(self.models_size) |
|
return avg_probs, avg_attn |
|
|
|
@torch.jit.export |
|
def reorder_encoder_out( |
|
self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order |
|
): |
|
""" |
|
Reorder encoder output according to *new_order*. |
|
|
|
Args: |
|
encoder_out: output from the ``forward()`` method |
|
new_order (LongTensor): desired order |
|
|
|
Returns: |
|
*encoder_out* rearranged according to *new_order* |
|
""" |
|
new_outs: List[Dict[str, List[Tensor]]] = [] |
|
if not self.has_encoder(): |
|
return new_outs |
|
for i, model in enumerate(self.models): |
|
assert encoder_outs is not None |
|
new_outs.append( |
|
model.encoder.reorder_encoder_out(encoder_outs[i], new_order) |
|
) |
|
return new_outs |
|
|
|
@torch.jit.export |
|
def reorder_incremental_state( |
|
self, |
|
incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], |
|
new_order, |
|
): |
|
if not self.has_incremental_states(): |
|
return |
|
for i, model in enumerate(self.models): |
|
model.decoder.reorder_incremental_state_scripting( |
|
incremental_states[i], new_order |
|
) |
|
|
|
|
|
class SequenceGeneratorWithAlignment(SequenceGenerator): |
|
def __init__( |
|
self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs |
|
): |
|
"""Generates translations of a given source sentence. |
|
|
|
Produces alignments following "Jointly Learning to Align and |
|
Translate with Transformer Models" (Garg et al., EMNLP 2019). |
|
|
|
Args: |
|
left_pad_target (bool, optional): Whether or not the |
|
hypothesis should be left padded or not when they are |
|
teacher forced for generating alignments. |
|
""" |
|
super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) |
|
self.left_pad_target = left_pad_target |
|
|
|
if print_alignment == "hard": |
|
self.extract_alignment = utils.extract_hard_alignment |
|
elif print_alignment == "soft": |
|
self.extract_alignment = utils.extract_soft_alignment |
|
|
|
@torch.no_grad() |
|
def generate(self, models, sample, **kwargs): |
|
finalized = super()._generate(sample, **kwargs) |
|
|
|
src_tokens = sample["net_input"]["src_tokens"] |
|
bsz = src_tokens.shape[0] |
|
beam_size = self.beam_size |
|
( |
|
src_tokens, |
|
src_lengths, |
|
prev_output_tokens, |
|
tgt_tokens, |
|
) = self._prepare_batch_for_alignment(sample, finalized) |
|
if any(getattr(m, "full_context_alignment", False) for m in self.model.models): |
|
attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) |
|
else: |
|
attn = [ |
|
finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) |
|
for i in range(bsz * beam_size) |
|
] |
|
|
|
if src_tokens.device != "cpu": |
|
src_tokens = src_tokens.to("cpu") |
|
tgt_tokens = tgt_tokens.to("cpu") |
|
attn = [i.to("cpu") for i in attn] |
|
|
|
|
|
for i in range(bsz * beam_size): |
|
alignment = self.extract_alignment( |
|
attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos |
|
) |
|
finalized[i // beam_size][i % beam_size]["alignment"] = alignment |
|
return finalized |
|
|
|
def _prepare_batch_for_alignment(self, sample, hypothesis): |
|
src_tokens = sample["net_input"]["src_tokens"] |
|
bsz = src_tokens.shape[0] |
|
src_tokens = ( |
|
src_tokens[:, None, :] |
|
.expand(-1, self.beam_size, -1) |
|
.contiguous() |
|
.view(bsz * self.beam_size, -1) |
|
) |
|
src_lengths = sample["net_input"]["src_lengths"] |
|
src_lengths = ( |
|
src_lengths[:, None] |
|
.expand(-1, self.beam_size) |
|
.contiguous() |
|
.view(bsz * self.beam_size) |
|
) |
|
prev_output_tokens = data_utils.collate_tokens( |
|
[beam["tokens"] for example in hypothesis for beam in example], |
|
self.pad, |
|
self.eos, |
|
self.left_pad_target, |
|
move_eos_to_beginning=True, |
|
) |
|
tgt_tokens = data_utils.collate_tokens( |
|
[beam["tokens"] for example in hypothesis for beam in example], |
|
self.pad, |
|
self.eos, |
|
self.left_pad_target, |
|
move_eos_to_beginning=False, |
|
) |
|
return src_tokens, src_lengths, prev_output_tokens, tgt_tokens |
|
|
|
|
|
class EnsembleModelWithAlignment(EnsembleModel): |
|
"""A wrapper around an ensemble of models.""" |
|
|
|
def __init__(self, models): |
|
super().__init__(models) |
|
|
|
def forward_align(self, src_tokens, src_lengths, prev_output_tokens): |
|
avg_attn = None |
|
for model in self.models: |
|
decoder_out = model(src_tokens, src_lengths, prev_output_tokens) |
|
attn = decoder_out[1]["attn"][0] |
|
if avg_attn is None: |
|
avg_attn = attn |
|
else: |
|
avg_attn.add_(attn) |
|
if len(self.models) > 1: |
|
avg_attn.div_(len(self.models)) |
|
return avg_attn |
|
|