|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass, field |
|
|
|
import numpy as np |
|
from omegaconf import II, MISSING, OmegaConf |
|
|
|
from fairseq import utils |
|
from fairseq.data import ( |
|
Dictionary, |
|
IdDataset, |
|
MaskTokensDataset, |
|
NestedDictionaryDataset, |
|
NumelDataset, |
|
NumSamplesDataset, |
|
PrependTokenDataset, |
|
RightPadDataset, |
|
SortDataset, |
|
TokenBlockDataset, |
|
data_utils, |
|
) |
|
from fairseq.data.encoders.utils import get_whole_word_mask |
|
from fairseq.data.shorten_dataset import maybe_shorten_dataset |
|
from fairseq.dataclass import FairseqDataclass |
|
from fairseq.tasks import FairseqTask, register_task |
|
|
|
from .language_modeling import SAMPLE_BREAK_MODE_CHOICES, SHORTEN_METHOD_CHOICES |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class MaskedLMConfig(FairseqDataclass): |
|
data: str = field( |
|
default=MISSING, |
|
metadata={ |
|
"help": "colon separated path to data directories list, \ |
|
will be iterated upon during epochs in round-robin manner" |
|
}, |
|
) |
|
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": 'If omitted or "none", fills each sample with tokens-per-sample ' |
|
'tokens. If set to "complete", splits samples only at the end ' |
|
"of sentence, but may include multiple sentences per sample. " |
|
'"complete_doc" is similar but respects doc boundaries. ' |
|
'If set to "eos", includes only one sentence per sample.' |
|
}, |
|
) |
|
tokens_per_sample: int = field( |
|
default=1024, |
|
metadata={"help": "max number of tokens per sample for LM dataset"}, |
|
) |
|
mask_prob: float = field( |
|
default=0.15, |
|
metadata={"help": "probability of replacing a token with mask"}, |
|
) |
|
leave_unmasked_prob: float = field( |
|
default=0.1, |
|
metadata={"help": "probability that a masked token is unmasked"}, |
|
) |
|
random_token_prob: float = field( |
|
default=0.1, |
|
metadata={"help": "probability of replacing a token with a random token"}, |
|
) |
|
freq_weighted_replacement: bool = field( |
|
default=False, |
|
metadata={"help": "sample random replacement words based on word frequencies"}, |
|
) |
|
mask_whole_words: bool = field( |
|
default=False, |
|
metadata={"help": "mask whole words; you may also want to set --bpe"}, |
|
) |
|
mask_multiple_length: int = field( |
|
default=1, |
|
metadata={"help": "repeat the mask indices multiple times"}, |
|
) |
|
mask_stdev: float = field( |
|
default=0.0, |
|
metadata={"help": "stdev of the mask length"}, |
|
) |
|
shorten_method: SHORTEN_METHOD_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": "if not none, shorten sequences that exceed --tokens-per-sample" |
|
}, |
|
) |
|
shorten_data_split_list: str = field( |
|
default="", |
|
metadata={ |
|
"help": "comma-separated list of dataset splits to apply shortening to, " |
|
'e.g., "train,valid" (default: all dataset splits)' |
|
}, |
|
) |
|
seed: int = II("common.seed") |
|
|
|
include_target_tokens: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "include target tokens in model input. this is used for data2vec" |
|
}, |
|
) |
|
|
|
|
|
@register_task("masked_lm", dataclass=MaskedLMConfig) |
|
class MaskedLMTask(FairseqTask): |
|
|
|
cfg: MaskedLMConfig |
|
|
|
"""Task for training masked language models (e.g., BERT, RoBERTa).""" |
|
|
|
def __init__(self, cfg: MaskedLMConfig, dictionary): |
|
super().__init__(cfg) |
|
self.dictionary = dictionary |
|
|
|
|
|
self.mask_idx = dictionary.add_symbol("<mask>") |
|
|
|
@classmethod |
|
def setup_task(cls, cfg: MaskedLMConfig, **kwargs): |
|
paths = utils.split_paths(cfg.data) |
|
assert len(paths) > 0 |
|
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) |
|
logger.info("dictionary: {} types".format(len(dictionary))) |
|
return cls(cfg, dictionary) |
|
|
|
def _load_dataset_split(self, split, epoch, combine): |
|
paths = utils.split_paths(self.cfg.data) |
|
assert len(paths) > 0 |
|
data_path = paths[(epoch - 1) % len(paths)] |
|
split_path = os.path.join(data_path, split) |
|
|
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, |
|
self.source_dictionary, |
|
combine=combine, |
|
) |
|
if dataset is None: |
|
raise FileNotFoundError( |
|
"Dataset not found: {} ({})".format(split, split_path) |
|
) |
|
|
|
dataset = maybe_shorten_dataset( |
|
dataset, |
|
split, |
|
self.cfg.shorten_data_split_list, |
|
self.cfg.shorten_method, |
|
self.cfg.tokens_per_sample, |
|
self.cfg.seed, |
|
) |
|
|
|
|
|
dataset = TokenBlockDataset( |
|
dataset, |
|
dataset.sizes, |
|
self.cfg.tokens_per_sample - 1, |
|
pad=self.source_dictionary.pad(), |
|
eos=self.source_dictionary.eos(), |
|
break_mode=self.cfg.sample_break_mode, |
|
) |
|
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) |
|
|
|
|
|
return PrependTokenDataset(dataset, self.source_dictionary.bos()) |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
dataset = self._load_dataset_split(split, epoch, combine) |
|
|
|
|
|
mask_whole_words = ( |
|
get_whole_word_mask(self.args, self.source_dictionary) |
|
if self.cfg.mask_whole_words |
|
else None |
|
) |
|
|
|
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( |
|
dataset, |
|
self.source_dictionary, |
|
pad_idx=self.source_dictionary.pad(), |
|
mask_idx=self.mask_idx, |
|
seed=self.cfg.seed, |
|
mask_prob=self.cfg.mask_prob, |
|
leave_unmasked_prob=self.cfg.leave_unmasked_prob, |
|
random_token_prob=self.cfg.random_token_prob, |
|
freq_weighted_replacement=self.cfg.freq_weighted_replacement, |
|
mask_whole_words=mask_whole_words, |
|
mask_multiple_length=self.cfg.mask_multiple_length, |
|
mask_stdev=self.cfg.mask_stdev, |
|
) |
|
|
|
with data_utils.numpy_seed(self.cfg.seed): |
|
shuffle = np.random.permutation(len(src_dataset)) |
|
|
|
target_dataset = RightPadDataset( |
|
tgt_dataset, |
|
pad_idx=self.source_dictionary.pad(), |
|
) |
|
|
|
input_dict = { |
|
"src_tokens": RightPadDataset( |
|
src_dataset, |
|
pad_idx=self.source_dictionary.pad(), |
|
), |
|
"src_lengths": NumelDataset(src_dataset, reduce=False), |
|
} |
|
if self.cfg.include_target_tokens: |
|
input_dict["target_tokens"] = target_dataset |
|
|
|
self.datasets[split] = SortDataset( |
|
NestedDictionaryDataset( |
|
{ |
|
"id": IdDataset(), |
|
"net_input": input_dict, |
|
"target": target_dataset, |
|
"nsentences": NumSamplesDataset(), |
|
"ntokens": NumelDataset(src_dataset, reduce=True), |
|
}, |
|
sizes=[src_dataset.sizes], |
|
), |
|
sort_order=[ |
|
shuffle, |
|
src_dataset.sizes, |
|
], |
|
) |
|
|
|
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): |
|
src_dataset = RightPadDataset( |
|
TokenBlockDataset( |
|
src_tokens, |
|
src_lengths, |
|
self.cfg.tokens_per_sample - 1, |
|
pad=self.source_dictionary.pad(), |
|
eos=self.source_dictionary.eos(), |
|
break_mode="eos", |
|
), |
|
pad_idx=self.source_dictionary.pad(), |
|
) |
|
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) |
|
src_dataset = NestedDictionaryDataset( |
|
{ |
|
"id": IdDataset(), |
|
"net_input": { |
|
"src_tokens": src_dataset, |
|
"src_lengths": NumelDataset(src_dataset, reduce=False), |
|
}, |
|
}, |
|
sizes=src_lengths, |
|
) |
|
if sort: |
|
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) |
|
return src_dataset |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.dictionary |
|
|