|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import numpy as np |
|
from omegaconf import II |
|
|
|
from fairseq.data import ( |
|
AppendTokenDataset, |
|
ConcatDataset, |
|
DenoisingDataset, |
|
Dictionary, |
|
PrependTokenDataset, |
|
ResamplingDataset, |
|
SortDataset, |
|
TokenBlockDataset, |
|
data_utils, |
|
) |
|
from fairseq.data.encoders.utils import get_whole_word_mask |
|
from fairseq.tasks import register_task |
|
|
|
from .denoising import DenoisingConfig, DenoisingTask |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class MultilingualDenoisingConfig(DenoisingConfig): |
|
multilang_sampling_alpha: float = field( |
|
default=1.0, |
|
metadata={"help": "smoothing alpha for sample ratios across multiple datasets"}, |
|
) |
|
add_lang_token: bool = field( |
|
default=False, |
|
metadata={"help": ""}, |
|
) |
|
langs: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "language ids we are considering"}, |
|
) |
|
no_whole_word_mask_langs: str = field( |
|
default="", |
|
metadata={ |
|
"help": "languages without spacing between words don't support whole word masking" |
|
}, |
|
) |
|
train_subset: str = II("common.train_subset") |
|
valid_subset: str = II("common.valid_subset") |
|
|
|
|
|
@register_task("multilingual_denoising", dataclass=MultilingualDenoisingConfig) |
|
class MultilingualDenoisingTask(DenoisingTask): |
|
|
|
cfg: MultilingualDenoisingConfig |
|
|
|
@classmethod |
|
def setup_task(cls, cfg: MultilingualDenoisingConfig, **kwargs): |
|
"""Setup the task.""" |
|
paths = cfg.data.split(":") |
|
assert len(paths) > 0 |
|
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) |
|
|
|
data_path = paths[0] |
|
if cfg.langs is None: |
|
languages = sorted( |
|
[ |
|
name |
|
for name in os.listdir(data_path) |
|
if os.path.isdir(os.path.join(data_path, name)) |
|
] |
|
) |
|
else: |
|
languages = cfg.langs.split(",") |
|
|
|
if cfg.add_lang_token: |
|
for lang in languages: |
|
dictionary.add_symbol("[{}]".format(lang)) |
|
|
|
logger.info("dictionary: {} types".format(len(dictionary))) |
|
if not hasattr(cfg, "shuffle_instance"): |
|
cfg.shuffle_instance = False |
|
return cls(cfg, dictionary) |
|
|
|
def __init__(self, cfg: MultilingualDenoisingConfig, dictionary): |
|
super().__init__(cfg, dictionary) |
|
self.dictionary = dictionary |
|
|
|
|
|
self.mask_idx = self.dictionary.add_symbol("<mask>") |
|
self.cfg = cfg |
|
|
|
def _get_sample_prob(self, dataset_lens): |
|
""" |
|
Get smoothed sampling probability by languages. This helps low resource |
|
languages by upsampling them. |
|
""" |
|
prob = dataset_lens / dataset_lens.sum() |
|
smoothed_prob = prob**self.cfg.multilang_sampling_alpha |
|
smoothed_prob = smoothed_prob / smoothed_prob.sum() |
|
return smoothed_prob |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
paths = self.cfg.data.split(":") |
|
assert len(paths) > 0 |
|
data_path = paths[(epoch - 1) % len(paths)] |
|
split_path = os.path.join(data_path, split) |
|
|
|
if self.cfg.langs is None: |
|
languages = sorted( |
|
[ |
|
name |
|
for name in os.listdir(data_path) |
|
if os.path.isdir(os.path.join(data_path, name)) |
|
] |
|
) |
|
else: |
|
languages = self.cfg.langs.split(",") |
|
for name in languages: |
|
p = os.path.join(data_path, name) |
|
assert os.path.exists(p), "data not found: {}".format(p) |
|
|
|
logger.info("Training on {0} languages: {1}".format(len(languages), languages)) |
|
logger.info( |
|
"Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} |
|
) |
|
|
|
mask_whole_words = get_whole_word_mask(self.cfg.bpe, self.dictionary) |
|
language_without_segmentations = self.cfg.no_whole_word_mask_langs.split(",") |
|
lang_datasets = [] |
|
for language in languages: |
|
split_path = os.path.join(data_path, language, split) |
|
|
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, |
|
self.source_dictionary, |
|
self.cfg.dataset_impl, |
|
combine=combine, |
|
) |
|
if dataset is None: |
|
raise FileNotFoundError( |
|
"Dataset not found: {} ({})".format(split, split_path) |
|
) |
|
|
|
end_token = ( |
|
self.source_dictionary.index("[{}]".format(language)) |
|
if self.cfg.add_lang_token |
|
else self.source_dictionary.eos() |
|
) |
|
|
|
|
|
dataset = TokenBlockDataset( |
|
dataset, |
|
dataset.sizes, |
|
self.cfg.tokens_per_sample - 2, |
|
pad=self.source_dictionary.pad(), |
|
eos=end_token, |
|
break_mode=self.cfg.sample_break_mode, |
|
) |
|
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) |
|
|
|
|
|
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) |
|
dataset = AppendTokenDataset(dataset, end_token) |
|
|
|
lang_mask_whole_words = ( |
|
mask_whole_words |
|
if language not in language_without_segmentations |
|
else None |
|
) |
|
lang_dataset = DenoisingDataset( |
|
dataset, |
|
dataset.sizes, |
|
self.dictionary, |
|
self.mask_idx, |
|
lang_mask_whole_words, |
|
shuffle=self.cfg.shuffle_instance, |
|
seed=self.cfg.seed, |
|
mask=self.cfg.mask, |
|
mask_random=self.cfg.mask_random, |
|
insert=self.cfg.insert, |
|
rotate=self.cfg.rotate, |
|
permute_sentences=self.cfg.permute_sentences, |
|
bpe=self.cfg.bpe, |
|
replace_length=self.cfg.replace_length, |
|
mask_length=self.cfg.mask_length, |
|
poisson_lambda=self.cfg.poisson_lambda, |
|
eos=None |
|
if not self.cfg.add_lang_token |
|
else self.source_dictionary.index("[{}]".format(language)), |
|
) |
|
lang_datasets.append(lang_dataset) |
|
|
|
dataset_lengths = np.array( |
|
[len(d) for d in lang_datasets], |
|
dtype=float, |
|
) |
|
logger.info( |
|
"loaded total {} blocks for all languages".format( |
|
int(dataset_lengths.sum()), |
|
) |
|
) |
|
if split == self.cfg.train_subset: |
|
|
|
sample_probs = self._get_sample_prob(dataset_lengths) |
|
logger.info( |
|
"Sample probability by language: {}".format( |
|
{ |
|
lang: "{0:.4f}".format(sample_probs[id]) |
|
for id, lang in enumerate(languages) |
|
} |
|
) |
|
) |
|
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths |
|
logger.info( |
|
"Up/Down Sampling ratio by language: {}".format( |
|
{ |
|
lang: "{0:.2f}".format(size_ratio[id]) |
|
for id, lang in enumerate(languages) |
|
} |
|
) |
|
) |
|
|
|
resampled_lang_datasets = [ |
|
ResamplingDataset( |
|
lang_datasets[i], |
|
size_ratio=size_ratio[i], |
|
seed=self.cfg.seed, |
|
epoch=epoch, |
|
replace=size_ratio[i] >= 1.0, |
|
) |
|
for i, d in enumerate(lang_datasets) |
|
] |
|
dataset = ConcatDataset( |
|
resampled_lang_datasets, |
|
) |
|
else: |
|
dataset = ConcatDataset(lang_datasets) |
|
lang_splits = [split] |
|
for lang_id, lang_dataset in enumerate(lang_datasets): |
|
split_name = split + "_" + languages[lang_id] |
|
lang_splits.append(split_name) |
|
self.datasets[split_name] = lang_dataset |
|
|
|
if split in self.cfg.valid_subset: |
|
self.cfg.valid_subset = self.cfg.valid_subset.replace( |
|
split, ",".join(lang_splits) |
|
) |
|
|
|
with data_utils.numpy_seed(self.cfg.seed + epoch): |
|
shuffle = np.random.permutation(len(dataset)) |
|
|
|
self.datasets[split] = SortDataset( |
|
dataset, |
|
sort_order=[ |
|
shuffle, |
|
dataset.sizes, |
|
], |
|
) |
|
|