|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
|
|
import contextlib |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
from omegaconf import MISSING, II, open_dict, OmegaConf |
|
|
|
import numpy as np |
|
from fairseq.data import ( |
|
ConcatSentencesDataset, |
|
Dictionary, |
|
IdDataset, |
|
NestedDictionaryDataset, |
|
NumelDataset, |
|
NumSamplesDataset, |
|
OffsetTokensDataset, |
|
PrependTokenDataset, |
|
RawLabelDataset, |
|
RightPadDataset, |
|
RollDataset, |
|
SortDataset, |
|
StripTokenDataset, |
|
data_utils, |
|
) |
|
from fairseq.data.shorten_dataset import maybe_shorten_dataset |
|
from fairseq.tasks import FairseqDataclass, FairseqTask, register_task |
|
from fairseq.dataclass import ChoiceEnum |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) |
|
|
|
|
|
@dataclass |
|
class SentencePredictionConfig(FairseqDataclass): |
|
data: str = field(default=MISSING, metadata={"help": "path to data directory"}) |
|
num_classes: int = field( |
|
default=-1, |
|
metadata={"help": "number of classes or regression targets"}, |
|
) |
|
init_token: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "add token at the beginning of each batch item"}, |
|
) |
|
separator_token: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "add separator token between inputs"}, |
|
) |
|
no_shuffle: bool = field( |
|
default=False, |
|
) |
|
shorten_method: SHORTEN_METHOD_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": "if not none, shorten sequences that exceed tokens_per_sample" |
|
}, |
|
) |
|
shorten_data_split_list: str = field( |
|
default="", |
|
metadata={ |
|
"help": "comma-separated list of dataset splits to apply shortening to, " |
|
'e.g., "train,valid" (default: all dataset splits)' |
|
}, |
|
) |
|
add_prev_output_tokens: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "add prev_output_tokens to sample, used for encoder-decoder arch" |
|
}, |
|
) |
|
max_positions: int = field( |
|
default=512, |
|
metadata={"help": "max tokens per example"}, |
|
) |
|
|
|
regression_target: bool = II("criterion.regression_target") |
|
classification_head_name: str = II("criterion.classification_head_name") |
|
seed: int = II("common.seed") |
|
|
|
|
|
@register_task("sentence_prediction", dataclass=SentencePredictionConfig) |
|
class SentencePredictionTask(FairseqTask): |
|
""" |
|
Sentence (or sentence pair) prediction (classification or regression) task. |
|
|
|
Args: |
|
dictionary (Dictionary): the dictionary for the input of the task |
|
""" |
|
|
|
def __init__(self, cfg, data_dictionary, label_dictionary): |
|
super().__init__(cfg) |
|
self.dictionary = data_dictionary |
|
self._label_dictionary = label_dictionary |
|
|
|
@classmethod |
|
def load_dictionary(cls, filename): |
|
"""Load the dictionary from the filename |
|
|
|
Args: |
|
filename (str): the filename |
|
""" |
|
dictionary = Dictionary.load(filename) |
|
dictionary.add_symbol("<mask>") |
|
return dictionary |
|
|
|
@classmethod |
|
def setup_task(cls, cfg, **kwargs): |
|
assert cfg.num_classes > 0, "Must set task.num_classes" |
|
|
|
|
|
data_dict = cls.load_dictionary( |
|
os.path.join(cfg.data, "input0", "dict.txt"), |
|
) |
|
logger.info("[input] dictionary: {} types".format(len(data_dict))) |
|
|
|
|
|
if not cfg.regression_target: |
|
label_dict = cls.load_dictionary( |
|
os.path.join(cfg.data, "label", "dict.txt"), |
|
) |
|
logger.info("[label] dictionary: {} types".format(len(label_dict))) |
|
else: |
|
label_dict = data_dict |
|
return cls(cfg, data_dict, label_dict) |
|
|
|
def load_dataset(self, split, combine=False, **kwargs): |
|
"""Load a given dataset split (e.g., train, valid, test).""" |
|
|
|
def get_path(key, split): |
|
return os.path.join(self.cfg.data, key, split) |
|
|
|
def make_dataset(key, dictionary): |
|
split_path = get_path(key, split) |
|
|
|
try: |
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, |
|
dictionary, |
|
combine=combine, |
|
) |
|
except Exception as e: |
|
if "StorageException: [404] Path not found" in str(e): |
|
logger.warning(f"dataset {e} not found") |
|
dataset = None |
|
else: |
|
raise e |
|
return dataset |
|
|
|
input0 = make_dataset("input0", self.source_dictionary) |
|
assert input0 is not None, "could not find dataset: {}".format( |
|
get_path("input0", split) |
|
) |
|
input1 = make_dataset("input1", self.source_dictionary) |
|
|
|
if self.cfg.init_token is not None: |
|
input0 = PrependTokenDataset(input0, self.cfg.init_token) |
|
|
|
if input1 is None: |
|
src_tokens = input0 |
|
else: |
|
if self.cfg.separator_token is not None: |
|
input1 = PrependTokenDataset(input1, self.cfg.separator_token) |
|
|
|
src_tokens = ConcatSentencesDataset(input0, input1) |
|
|
|
with data_utils.numpy_seed(self.cfg.seed): |
|
shuffle = np.random.permutation(len(src_tokens)) |
|
|
|
src_tokens = maybe_shorten_dataset( |
|
src_tokens, |
|
split, |
|
self.cfg.shorten_data_split_list, |
|
self.cfg.shorten_method, |
|
self.max_positions(), |
|
self.cfg.seed, |
|
) |
|
|
|
dataset = { |
|
"id": IdDataset(), |
|
"net_input": { |
|
"src_tokens": RightPadDataset( |
|
src_tokens, |
|
pad_idx=self.source_dictionary.pad(), |
|
), |
|
"src_lengths": NumelDataset(src_tokens, reduce=False), |
|
}, |
|
"nsentences": NumSamplesDataset(), |
|
"ntokens": NumelDataset(src_tokens, reduce=True), |
|
} |
|
|
|
if self.cfg.add_prev_output_tokens: |
|
prev_tokens_dataset = RightPadDataset( |
|
RollDataset(src_tokens, 1), |
|
pad_idx=self.dictionary.pad(), |
|
) |
|
dataset["net_input"].update( |
|
prev_output_tokens=prev_tokens_dataset, |
|
) |
|
|
|
if not self.cfg.regression_target: |
|
label_dataset = make_dataset("label", self.label_dictionary) |
|
if label_dataset is not None: |
|
dataset.update( |
|
target=OffsetTokensDataset( |
|
StripTokenDataset( |
|
label_dataset, |
|
id_to_strip=self.label_dictionary.eos(), |
|
), |
|
offset=-self.label_dictionary.nspecial, |
|
) |
|
) |
|
else: |
|
label_path = "{0}.label".format(get_path("label", split)) |
|
if os.path.exists(label_path): |
|
|
|
def parse_regression_target(i, line): |
|
values = line.split() |
|
assert ( |
|
len(values) == self.cfg.num_classes |
|
), f'expected num_classes={self.cfg.num_classes} regression target values on line {i}, found: "{line}"' |
|
return [float(x) for x in values] |
|
|
|
with open(label_path) as h: |
|
dataset.update( |
|
target=RawLabelDataset( |
|
[ |
|
parse_regression_target(i, line.strip()) |
|
for i, line in enumerate(h.readlines()) |
|
] |
|
) |
|
) |
|
|
|
nested_dataset = NestedDictionaryDataset( |
|
dataset, |
|
sizes=[src_tokens.sizes], |
|
) |
|
|
|
if self.cfg.no_shuffle: |
|
dataset = nested_dataset |
|
else: |
|
dataset = SortDataset( |
|
nested_dataset, |
|
|
|
sort_order=[shuffle], |
|
) |
|
|
|
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) |
|
|
|
self.datasets[split] = dataset |
|
return self.datasets[split] |
|
|
|
def build_model(self, cfg, from_checkpoint=False): |
|
from fairseq import models |
|
|
|
with open_dict(cfg) if OmegaConf.is_config(cfg) else contextlib.ExitStack(): |
|
cfg.max_positions = self.cfg.max_positions |
|
|
|
model = models.build_model(cfg, self, from_checkpoint) |
|
|
|
model.register_classification_head( |
|
self.cfg.classification_head_name, |
|
num_classes=self.cfg.num_classes, |
|
) |
|
|
|
return model |
|
|
|
def max_positions(self): |
|
return self.cfg.max_positions |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def label_dictionary(self): |
|
return self._label_dictionary |
|
|