|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
|
|
import numpy as np |
|
from fairseq import utils |
|
from fairseq.data import ( |
|
ConcatSentencesDataset, |
|
Dictionary, |
|
IdDataset, |
|
NestedDictionaryDataset, |
|
NumelDataset, |
|
NumSamplesDataset, |
|
PrependTokenDataset, |
|
RawLabelDataset, |
|
RightPadDataset, |
|
SortDataset, |
|
TruncateDataset, |
|
data_utils, |
|
) |
|
from fairseq.data.shorten_dataset import maybe_shorten_dataset |
|
from fairseq.tasks import LegacyFairseqTask, register_task |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@register_task("sentence_ranking") |
|
class SentenceRankingTask(LegacyFairseqTask): |
|
""" |
|
Ranking task on multiple sentences. |
|
|
|
Args: |
|
dictionary (Dictionary): the dictionary for the input of the task |
|
""" |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add task-specific arguments to the parser.""" |
|
parser.add_argument("data", metavar="FILE", help="file prefix for data") |
|
parser.add_argument( |
|
"--num-classes", type=int, help="number of sentences to be ranked" |
|
) |
|
parser.add_argument( |
|
"--init-token", |
|
type=int, |
|
help="add token at the beginning of each batch item", |
|
) |
|
parser.add_argument( |
|
"--separator-token", type=int, help="add separator token between inputs" |
|
) |
|
parser.add_argument("--no-shuffle", action="store_true") |
|
parser.add_argument( |
|
"--shorten-method", |
|
default="none", |
|
choices=["none", "truncate", "random_crop"], |
|
help="if not none, shorten sequences that exceed --tokens-per-sample", |
|
) |
|
parser.add_argument( |
|
"--shorten-data-split-list", |
|
default="", |
|
help="comma-separated list of dataset splits to apply shortening to, " |
|
'e.g., "train,valid" (default: all dataset splits)', |
|
) |
|
parser.add_argument( |
|
"--max-option-length", type=int, help="max length for each option" |
|
) |
|
|
|
def __init__(self, args, dictionary): |
|
super().__init__(args) |
|
self.dictionary = dictionary |
|
|
|
@classmethod |
|
def load_dictionary(cls, args, filename, source=True): |
|
"""Load the dictionary from the filename |
|
|
|
Args: |
|
filename (str): the filename |
|
""" |
|
dictionary = Dictionary.load(filename) |
|
dictionary.add_symbol("<mask>") |
|
return dictionary |
|
|
|
@classmethod |
|
def setup_task(cls, args, **kwargs): |
|
assert ( |
|
args.criterion == "sentence_ranking" |
|
), "Must set --criterion=sentence_ranking" |
|
|
|
|
|
data_dict = cls.load_dictionary( |
|
args, |
|
os.path.join(args.data, "input0", "dict.txt"), |
|
source=True, |
|
) |
|
logger.info("[input] dictionary: {} types".format(len(data_dict))) |
|
return SentenceRankingTask(args, data_dict) |
|
|
|
def load_dataset(self, split, combine=False, **kwargs): |
|
"""Load a given dataset split (e.g., train, valid, test).""" |
|
|
|
def get_path(type, split): |
|
return os.path.join(self.args.data, type, split) |
|
|
|
def make_dataset(type, dictionary): |
|
split_path = get_path(type, split) |
|
|
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, |
|
self.source_dictionary, |
|
self.args.dataset_impl, |
|
combine=combine, |
|
) |
|
return dataset |
|
|
|
input0 = make_dataset("input0", self.source_dictionary) |
|
input_options = [ |
|
make_dataset("input{idx}".format(idx=idx + 1), self.source_dictionary) |
|
for idx in range(self.args.num_classes) |
|
] |
|
|
|
if self.args.separator_token is not None: |
|
input0 = PrependTokenDataset(input0, self.args.separator_token) |
|
|
|
src_tokens = [] |
|
for input_option in input_options: |
|
if self.args.init_token is not None: |
|
input_option = PrependTokenDataset(input_option, self.args.init_token) |
|
if self.args.max_option_length is not None: |
|
input_option = TruncateDataset( |
|
input_option, self.args.max_option_length |
|
) |
|
src_token = ConcatSentencesDataset(input_option, input0) |
|
src_token = maybe_shorten_dataset( |
|
src_token, |
|
split, |
|
self.args.shorten_data_split_list, |
|
self.args.shorten_method, |
|
self.args.max_positions, |
|
self.args.seed, |
|
) |
|
src_tokens.append(src_token) |
|
|
|
with data_utils.numpy_seed(self.args.seed): |
|
shuffle = np.random.permutation(len(src_tokens[0])) |
|
|
|
dataset = { |
|
"id": IdDataset(), |
|
"nsentences": NumSamplesDataset(), |
|
"ntokens": NumelDataset(src_tokens[0], reduce=True), |
|
} |
|
|
|
for src_token_idx in range(len(src_tokens)): |
|
dataset.update( |
|
{ |
|
"net_input{idx}".format(idx=src_token_idx + 1): { |
|
"src_tokens": RightPadDataset( |
|
src_tokens[src_token_idx], |
|
pad_idx=self.source_dictionary.pad(), |
|
), |
|
"src_lengths": NumelDataset( |
|
src_tokens[src_token_idx], reduce=False |
|
), |
|
} |
|
} |
|
) |
|
|
|
label_path = "{}.label".format(get_path("label", split)) |
|
if os.path.exists(label_path): |
|
with open(label_path) as h: |
|
dataset.update( |
|
target=RawLabelDataset([int(x.strip()) for x in h.readlines()]) |
|
) |
|
|
|
nested_dataset = NestedDictionaryDataset( |
|
dataset, |
|
sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], |
|
) |
|
|
|
if self.args.no_shuffle: |
|
dataset = nested_dataset |
|
else: |
|
dataset = SortDataset( |
|
nested_dataset, |
|
|
|
sort_order=[shuffle], |
|
) |
|
|
|
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) |
|
|
|
self.datasets[split] = dataset |
|
return self.datasets[split] |
|
|
|
def build_model(self, args, from_checkpoint=False): |
|
from fairseq import models |
|
|
|
model = models.build_model(args, self, from_checkpoint) |
|
|
|
model.register_classification_head( |
|
getattr(args, "ranking_head_name", "sentence_classification_head"), |
|
num_classes=1, |
|
) |
|
|
|
return model |
|
|
|
def max_positions(self): |
|
return self.args.max_positions |
|
|
|
@property |
|
def source_dictionary(self): |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
return self.dictionary |
|
|