|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import numpy as np |
|
from omegaconf import II, MISSING |
|
|
|
from fairseq import utils |
|
from fairseq.data import ( |
|
AppendTokenDataset, |
|
Dictionary, |
|
IdDataset, |
|
NestedDictionaryDataset, |
|
NumelDataset, |
|
PadDataset, |
|
PrependTokenDataset, |
|
StripTokenDataset, |
|
TokenBlockDataset, |
|
data_utils, |
|
) |
|
from fairseq.data.shorten_dataset import maybe_shorten_dataset |
|
from fairseq.data.span_mask_tokens_dataset import SpanMaskedTokensDataset |
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass |
|
from fairseq.tasks import FairseqTask, register_task |
|
|
|
from ..data.indexed_dataset import get_available_dataset_impl |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) |
|
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) |
|
|
|
|
|
@dataclass |
|
class SpanMaskedLMConfig(FairseqDataclass): |
|
shuffle: bool = field( |
|
default=False, |
|
) |
|
noise_density: float = field( |
|
default=0.15, |
|
metadata={"help": "What fraction of the tokens to select as noise"}, |
|
) |
|
mean_noise_span_length: float = field( |
|
default=3, |
|
metadata={"help": "Mean noise span length, must be >= 1"}, |
|
) |
|
data: str = field( |
|
default=MISSING, |
|
metadata={ |
|
"help": "colon separated path to data directories list, " |
|
"will be iterated upon during epochs in round-robin manner" |
|
}, |
|
) |
|
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": 'If omitted or "none", fills each sample with tokens-per-sample ' |
|
'tokens. If set to "complete", splits samples only at the end ' |
|
"of sentence, but may include multiple sentences per sample. " |
|
'"complete_doc" is similar but respects doc boundaries. ' |
|
'If set to "eos", includes only one sentence per sample.' |
|
}, |
|
) |
|
tokens_per_sample: int = field( |
|
default=1024, |
|
metadata={"help": "max number of tokens per sample for LM dataset"}, |
|
) |
|
shorten_method: SHORTEN_METHOD_CHOICES = field( |
|
default="none", |
|
metadata={ |
|
"help": "if not none, shorten sequences that exceed --tokens-per-sample" |
|
}, |
|
) |
|
shorten_data_split_list: str = field( |
|
default="", |
|
metadata={ |
|
"help": "comma-separated list of dataset splits to apply shortening to, " |
|
'e.g., "train,valid" (default: all dataset splits)' |
|
}, |
|
) |
|
seed: int = II("common.seed") |
|
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( |
|
"dataset.dataset_impl" |
|
) |
|
max_source_positions: int = field( |
|
default=1024, metadata={"help": "max number of tokens in the source sequence"} |
|
) |
|
max_target_positions: int = field( |
|
default=1024, metadata={"help": "max number of tokens in the target sequence"} |
|
) |
|
include_target_tokens: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "include target tokens in model input. this is used for data2vec" |
|
}, |
|
) |
|
|
|
|
|
@register_task("span_masked_lm", dataclass=SpanMaskedLMConfig) |
|
class SpanMaskedLMTask(FairseqTask): |
|
""" |
|
Span masked language modeling task. (ie. T5) |
|
""" |
|
|
|
cfg: SpanMaskedLMConfig |
|
|
|
def __init__(self, cfg, dictionary): |
|
super().__init__(cfg) |
|
self.dictionary = dictionary |
|
|
|
@classmethod |
|
def setup_task(cls, cfg: SpanMaskedLMConfig, **kwargs): |
|
"""Setup the task.""" |
|
paths = utils.split_paths(cfg.data) |
|
assert len(paths) > 0 |
|
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) |
|
logger.info("dictionary: {} types".format(len(dictionary))) |
|
if not hasattr(cfg, "shuffle"): |
|
cfg.shuffle = False |
|
return cls(cfg, dictionary) |
|
|
|
def _load_dataset_split(self, split, epoch, combine): |
|
paths = utils.split_paths(self.cfg.data) |
|
assert len(paths) > 0 |
|
data_path = paths[(epoch - 1) % len(paths)] |
|
split_path = os.path.join(data_path, split) |
|
|
|
dataset = data_utils.load_indexed_dataset( |
|
split_path, |
|
self.dictionary, |
|
self.cfg.dataset_impl, |
|
combine=combine, |
|
) |
|
if dataset is None: |
|
raise FileNotFoundError( |
|
"Dataset not found: {} ({})".format(split, split_path) |
|
) |
|
|
|
dataset = StripTokenDataset(dataset, self.dictionary.eos()) |
|
|
|
dataset = maybe_shorten_dataset( |
|
dataset, |
|
split, |
|
self.cfg.shorten_data_split_list, |
|
self.cfg.shorten_method, |
|
self.cfg.tokens_per_sample, |
|
self.cfg.seed, |
|
) |
|
|
|
|
|
dataset = TokenBlockDataset( |
|
dataset, |
|
dataset.sizes, |
|
self.cfg.tokens_per_sample - 2, |
|
pad=self.dictionary.pad(), |
|
eos=self.dictionary.eos(), |
|
break_mode=self.cfg.sample_break_mode, |
|
document_sep_len=0, |
|
) |
|
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) |
|
|
|
|
|
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) |
|
dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) |
|
return dataset |
|
|
|
def load_dataset(self, split, epoch=1, combine=False, **kwargs): |
|
"""Load a given dataset split. |
|
|
|
Args: |
|
split (str): name of the split (e.g., train, valid, test) |
|
""" |
|
dataset = self._load_dataset_split(split, epoch, combine) |
|
|
|
self.datasets[split] = SpanMaskedTokensDataset( |
|
dataset, |
|
self.dictionary, |
|
noise_density=self.cfg.noise_density, |
|
mean_noise_span_length=self.cfg.mean_noise_span_length, |
|
shuffle=self.cfg.shuffle, |
|
seed=self.cfg.seed, |
|
) |
|
logger.info( |
|
"Split: {0}, Loaded {1} samples of span_masked_tokens_dataset".format( |
|
split, |
|
len(self.datasets[split]), |
|
) |
|
) |
|
|
|
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): |
|
""" |
|
Generate batches for inference. We assume that the input begins with a |
|
bos symbol (`<s>`) and ends with an eos symbol (`</s>`). |
|
""" |
|
pad = self.source_dictionary.pad() |
|
eos = self.source_dictionary.eos() |
|
src_dataset = TokenBlockDataset( |
|
src_tokens, |
|
src_lengths, |
|
block_size=self.cfg.tokens_per_sample - 2, |
|
pad=pad, |
|
eos=eos, |
|
break_mode=self.cfg.sample_break_mode, |
|
document_sep_len=0, |
|
) |
|
prev_output_tokens = PrependTokenDataset( |
|
StripTokenDataset(src_dataset, eos), eos |
|
) |
|
src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) |
|
return NestedDictionaryDataset( |
|
{ |
|
"id": IdDataset(), |
|
"net_input": { |
|
"src_tokens": src_dataset, |
|
"src_lengths": NumelDataset(src_dataset, reduce=False), |
|
"prev_output_tokens": PadDataset( |
|
prev_output_tokens, pad_idx=pad, left_pad=False |
|
), |
|
}, |
|
"target": src_dataset, |
|
}, |
|
sizes=[np.array(src_lengths)], |
|
) |
|
|
|
def max_positions(self): |
|
"""Return the max sentence length allowed by the task.""" |
|
return (self.cfg.max_source_positions, self.cfg.max_target_positions) |
|
|
|
@property |
|
def source_dictionary(self): |
|
"""Return the source :class:`~fairseq.data.Dictionary`.""" |
|
return self.dictionary |
|
|
|
@property |
|
def target_dictionary(self): |
|
"""Return the target :class:`~fairseq.data.Dictionary`.""" |
|
return self.dictionary |
|
|