|
from typing import Optional, Union, Callable |
|
|
|
from torch.nn import Conv2d, Module, Sequential, ConvTranspose2d |
|
|
|
from tha3.module.module_factory import ModuleFactory |
|
from tha3.nn.nonlinearity_factory import resolve_nonlinearity_factory |
|
from tha3.nn.normalization import NormalizationLayerFactory |
|
from tha3.nn.util import wrap_conv_or_linear_module, BlockArgs |
|
|
|
|
|
def create_conv7(in_channels: int, out_channels: int, |
|
bias: bool = False, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
use_spectral_norm: bool = False) -> Module: |
|
return wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=7, stride=1, padding=3, bias=bias), |
|
initialization_method, |
|
use_spectral_norm) |
|
|
|
|
|
def create_conv7_from_block_args(in_channels: int, |
|
out_channels: int, |
|
bias: bool = False, |
|
block_args: Optional[BlockArgs] = None) -> Module: |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_conv7( |
|
in_channels, out_channels, bias, |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm) |
|
|
|
|
|
def create_conv3(in_channels: int, |
|
out_channels: int, |
|
bias: bool = False, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
use_spectral_norm: bool = False) -> Module: |
|
return wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=bias), |
|
initialization_method, |
|
use_spectral_norm) |
|
|
|
|
|
def create_conv3_from_block_args(in_channels: int, out_channels: int, |
|
bias: bool = False, |
|
block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_conv3(in_channels, out_channels, bias, |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm) |
|
|
|
|
|
def create_conv1(in_channels: int, out_channels: int, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
bias: bool = False, |
|
use_spectral_norm: bool = False) -> Module: |
|
return wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), |
|
initialization_method, |
|
use_spectral_norm) |
|
|
|
|
|
def create_conv1_from_block_args(in_channels: int, |
|
out_channels: int, |
|
bias: bool = False, |
|
block_args: Optional[BlockArgs] = None) -> Module: |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_conv1( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
initialization_method=block_args.initialization_method, |
|
bias=bias, |
|
use_spectral_norm=block_args.use_spectral_norm) |
|
|
|
|
|
def create_conv7_block(in_channels: int, out_channels: int, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
nonlinearity_factory: Optional[ModuleFactory] = None, |
|
normalization_layer_factory: Optional[NormalizationLayerFactory] = None, |
|
use_spectral_norm: bool = False) -> Module: |
|
nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) |
|
return Sequential( |
|
create_conv7(in_channels, out_channels, |
|
bias=False, initialization_method=initialization_method, use_spectral_norm=use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), |
|
resolve_nonlinearity_factory(nonlinearity_factory).create()) |
|
|
|
|
|
def create_conv7_block_from_block_args( |
|
in_channels: int, out_channels: int, |
|
block_args: Optional[BlockArgs] = None) -> Module: |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_conv7_block(in_channels, out_channels, |
|
block_args.initialization_method, |
|
block_args.nonlinearity_factory, |
|
block_args.normalization_layer_factory, |
|
block_args.use_spectral_norm) |
|
|
|
|
|
def create_conv3_block(in_channels: int, out_channels: int, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
nonlinearity_factory: Optional[ModuleFactory] = None, |
|
normalization_layer_factory: Optional[NormalizationLayerFactory] = None, |
|
use_spectral_norm: bool = False) -> Module: |
|
nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) |
|
return Sequential( |
|
create_conv3(in_channels, out_channels, |
|
bias=False, initialization_method=initialization_method, use_spectral_norm=use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), |
|
resolve_nonlinearity_factory(nonlinearity_factory).create()) |
|
|
|
|
|
def create_conv3_block_from_block_args( |
|
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_conv3_block(in_channels, out_channels, |
|
block_args.initialization_method, |
|
block_args.nonlinearity_factory, |
|
block_args.normalization_layer_factory, |
|
block_args.use_spectral_norm) |
|
|
|
|
|
def create_downsample_block(in_channels: int, out_channels: int, |
|
is_output_1x1: bool = False, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
nonlinearity_factory: Optional[ModuleFactory] = None, |
|
normalization_layer_factory: Optional[NormalizationLayerFactory] = None, |
|
use_spectral_norm: bool = False) -> Module: |
|
if is_output_1x1: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), |
|
initialization_method, |
|
use_spectral_norm), |
|
resolve_nonlinearity_factory(nonlinearity_factory).create()) |
|
else: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), |
|
initialization_method, |
|
use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), |
|
resolve_nonlinearity_factory(nonlinearity_factory).create()) |
|
|
|
|
|
def create_downsample_block_from_block_args(in_channels: int, out_channels: int, |
|
is_output_1x1: bool = False, |
|
block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_downsample_block( |
|
in_channels, out_channels, |
|
is_output_1x1, |
|
block_args.initialization_method, |
|
block_args.nonlinearity_factory, |
|
block_args.normalization_layer_factory, |
|
block_args.use_spectral_norm) |
|
|
|
|
|
def create_upsample_block(in_channels: int, |
|
out_channels: int, |
|
initialization_method: Union[str, Callable[[Module], Module]] = 'he', |
|
nonlinearity_factory: Optional[ModuleFactory] = None, |
|
normalization_layer_factory: Optional[NormalizationLayerFactory] = None, |
|
use_spectral_norm: bool = False) -> Module: |
|
nonlinearity_factory = resolve_nonlinearity_factory(nonlinearity_factory) |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1, bias=False), |
|
initialization_method, |
|
use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(normalization_layer_factory).create(out_channels, affine=True), |
|
resolve_nonlinearity_factory(nonlinearity_factory).create()) |
|
|
|
|
|
def create_upsample_block_from_block_args(in_channels: int, |
|
out_channels: int, |
|
block_args: Optional[BlockArgs] = None) -> Module: |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return create_upsample_block(in_channels, out_channels, |
|
block_args.initialization_method, |
|
block_args.nonlinearity_factory, |
|
block_args.normalization_layer_factory, |
|
block_args.use_spectral_norm) |
|
|