TomatoCocotree
上传
6a62ffb
from typing import Optional
from torch.nn import Sequential, Conv2d, ConvTranspose2d, Module
from tha3.nn.normalization import NormalizationLayerFactory
from tha3.nn.util import BlockArgs, wrap_conv_or_linear_module
def create_separable_conv3(in_channels: int, out_channels: int,
bias: bool = False,
initialization_method='he',
use_spectral_norm: bool = False) -> Module:
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels),
initialization_method,
use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias),
initialization_method,
use_spectral_norm))
def create_separable_conv7(in_channels: int, out_channels: int,
bias: bool = False,
initialization_method='he',
use_spectral_norm: bool = False) -> Module:
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels),
initialization_method,
use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias),
initialization_method,
use_spectral_norm))
def create_separable_conv3_block(
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
if block_args is None:
block_args = BlockArgs()
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels),
block_args.initialization_method,
block_args.use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
block_args.initialization_method,
block_args.use_spectral_norm),
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True),
block_args.nonlinearity_factory.create())
def create_separable_conv7_block(
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
if block_args is None:
block_args = BlockArgs()
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels),
block_args.initialization_method,
block_args.use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
block_args.initialization_method,
block_args.use_spectral_norm),
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True),
block_args.nonlinearity_factory.create())
def create_separable_downsample_block(
in_channels: int, out_channels: int, is_output_1x1: bool, block_args: Optional[BlockArgs] = None):
if block_args is None:
block_args = BlockArgs()
if is_output_1x1:
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
block_args.initialization_method,
block_args.use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
block_args.initialization_method,
block_args.use_spectral_norm),
block_args.nonlinearity_factory.create())
else:
return Sequential(
wrap_conv_or_linear_module(
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
block_args.initialization_method,
block_args.use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
block_args.initialization_method,
block_args.use_spectral_norm),
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory)
.create(out_channels, affine=True),
block_args.nonlinearity_factory.create())
def create_separable_upsample_block(
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None):
if block_args is None:
block_args = BlockArgs()
return Sequential(
wrap_conv_or_linear_module(
ConvTranspose2d(
in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels),
block_args.initialization_method,
block_args.use_spectral_norm),
wrap_conv_or_linear_module(
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
block_args.initialization_method,
block_args.use_spectral_norm),
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory)
.create(out_channels, affine=True),
block_args.nonlinearity_factory.create())