|
from typing import Optional |
|
|
|
from torch.nn import Sequential, Conv2d, ConvTranspose2d, Module |
|
|
|
from tha3.nn.normalization import NormalizationLayerFactory |
|
from tha3.nn.util import BlockArgs, wrap_conv_or_linear_module |
|
|
|
|
|
def create_separable_conv3(in_channels: int, out_channels: int, |
|
bias: bool = False, |
|
initialization_method='he', |
|
use_spectral_norm: bool = False) -> Module: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels), |
|
initialization_method, |
|
use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), |
|
initialization_method, |
|
use_spectral_norm)) |
|
|
|
|
|
def create_separable_conv7(in_channels: int, out_channels: int, |
|
bias: bool = False, |
|
initialization_method='he', |
|
use_spectral_norm: bool = False) -> Module: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels), |
|
initialization_method, |
|
use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=bias), |
|
initialization_method, |
|
use_spectral_norm)) |
|
|
|
|
|
def create_separable_conv3_block( |
|
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, bias=False, groups=in_channels), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True), |
|
block_args.nonlinearity_factory.create()) |
|
|
|
|
|
def create_separable_conv7_block( |
|
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=7, stride=1, padding=3, bias=False, groups=in_channels), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory).create(out_channels, affine=True), |
|
block_args.nonlinearity_factory.create()) |
|
|
|
|
|
def create_separable_downsample_block( |
|
in_channels: int, out_channels: int, is_output_1x1: bool, block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
if is_output_1x1: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
block_args.nonlinearity_factory.create()) |
|
else: |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory) |
|
.create(out_channels, affine=True), |
|
block_args.nonlinearity_factory.create()) |
|
|
|
|
|
def create_separable_upsample_block( |
|
in_channels: int, out_channels: int, block_args: Optional[BlockArgs] = None): |
|
if block_args is None: |
|
block_args = BlockArgs() |
|
return Sequential( |
|
wrap_conv_or_linear_module( |
|
ConvTranspose2d( |
|
in_channels, in_channels, kernel_size=4, stride=2, padding=1, bias=False, groups=in_channels), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
wrap_conv_or_linear_module( |
|
Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False), |
|
block_args.initialization_method, |
|
block_args.use_spectral_norm), |
|
NormalizationLayerFactory.resolve_2d(block_args.normalization_layer_factory) |
|
.create(out_channels, affine=True), |
|
block_args.nonlinearity_factory.create()) |
|
|