|
from enum import Enum |
|
from typing import List, Dict, Optional |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.nn import Module |
|
from torch.nn.functional import interpolate |
|
|
|
from tha3.nn.eyebrow_decomposer.eyebrow_decomposer_00 import EyebrowDecomposer00, \ |
|
EyebrowDecomposer00Factory, EyebrowDecomposer00Args |
|
from tha3.nn.eyebrow_morphing_combiner.eyebrow_morphing_combiner_00 import \ |
|
EyebrowMorphingCombiner00Factory, EyebrowMorphingCombiner00Args, EyebrowMorphingCombiner00 |
|
from tha3.nn.face_morpher.face_morpher_08 import FaceMorpher08Args, FaceMorpher08Factory |
|
from tha3.poser.general_poser_02 import GeneralPoser02 |
|
from tha3.poser.poser import PoseParameterCategory, PoseParameters |
|
from tha3.nn.editor.editor_07 import Editor07, Editor07Args |
|
from tha3.nn.two_algo_body_rotator.two_algo_face_body_rotator_05 import TwoAlgoFaceBodyRotator05, \ |
|
TwoAlgoFaceBodyRotator05Args |
|
from tha3.util import torch_load |
|
from tha3.compute.cached_computation_func import TensorListCachedComputationFunc |
|
from tha3.compute.cached_computation_protocol import CachedComputationProtocol |
|
from tha3.nn.nonlinearity_factory import ReLUFactory, LeakyReLUFactory |
|
from tha3.nn.normalization import InstanceNorm2dFactory |
|
from tha3.nn.util import BlockArgs |
|
|
|
|
|
class Network(Enum): |
|
eyebrow_decomposer = 1 |
|
eyebrow_morphing_combiner = 2 |
|
face_morpher = 3 |
|
two_algo_face_body_rotator = 4 |
|
editor = 5 |
|
|
|
@property |
|
def outputs_key(self): |
|
return f"{self.name}_outputs" |
|
|
|
|
|
class Branch(Enum): |
|
face_morphed_half = 1 |
|
face_morphed_full = 2 |
|
all_outputs = 3 |
|
|
|
|
|
NUM_EYEBROW_PARAMS = 12 |
|
NUM_FACE_PARAMS = 27 |
|
NUM_ROTATION_PARAMS = 6 |
|
|
|
|
|
class FiveStepPoserComputationProtocol(CachedComputationProtocol): |
|
def __init__(self, eyebrow_morphed_image_index: int): |
|
super().__init__() |
|
self.eyebrow_morphed_image_index = eyebrow_morphed_image_index |
|
self.cached_batch_0 = None |
|
self.cached_eyebrow_decomposer_output = None |
|
|
|
def compute_func(self) -> TensorListCachedComputationFunc: |
|
def func(modules: Dict[str, Module], |
|
batch: List[Tensor], |
|
outputs: Dict[str, List[Tensor]]): |
|
if self.cached_batch_0 is None: |
|
new_batch_0 = True |
|
elif batch[0].shape[0] != self.cached_batch_0.shape[0]: |
|
new_batch_0 = True |
|
else: |
|
new_batch_0 = torch.max((batch[0] - self.cached_batch_0).abs()).item() > 0 |
|
if not new_batch_0: |
|
outputs[Network.eyebrow_decomposer.outputs_key] = self.cached_eyebrow_decomposer_output |
|
output = self.get_output(Branch.all_outputs.name, modules, batch, outputs) |
|
if new_batch_0: |
|
self.cached_batch_0 = batch[0] |
|
self.cached_eyebrow_decomposer_output = outputs[Network.eyebrow_decomposer.outputs_key] |
|
return output |
|
|
|
return func |
|
|
|
def compute_output(self, key: str, modules: Dict[str, Module], batch: List[Tensor], |
|
outputs: Dict[str, List[Tensor]]) -> List[Tensor]: |
|
if key == Network.eyebrow_decomposer.outputs_key: |
|
input_image = batch[0][:, :, 64:192, 64 + 128:192 + 128] |
|
return modules[Network.eyebrow_decomposer.name].forward(input_image) |
|
elif key == Network.eyebrow_morphing_combiner.outputs_key: |
|
eyebrow_decomposer_output = self.get_output(Network.eyebrow_decomposer.outputs_key, modules, batch, outputs) |
|
background_layer = eyebrow_decomposer_output[EyebrowDecomposer00.BACKGROUND_LAYER_INDEX] |
|
eyebrow_layer = eyebrow_decomposer_output[EyebrowDecomposer00.EYEBROW_LAYER_INDEX] |
|
eyebrow_pose = batch[1][:, :NUM_EYEBROW_PARAMS] |
|
return modules[Network.eyebrow_morphing_combiner.name].forward( |
|
background_layer, |
|
eyebrow_layer, |
|
eyebrow_pose) |
|
elif key == Network.face_morpher.outputs_key: |
|
eyebrow_morphing_combiner_output = self.get_output( |
|
Network.eyebrow_morphing_combiner.outputs_key, modules, batch, outputs) |
|
eyebrow_morphed_image = eyebrow_morphing_combiner_output[self.eyebrow_morphed_image_index] |
|
input_image = batch[0][:, :, 32:32 + 192, (32 + 128):(32 + 192 + 128)].clone() |
|
input_image[:, :, 32:32 + 128, 32:32 + 128] = eyebrow_morphed_image |
|
face_pose = batch[1][:, NUM_EYEBROW_PARAMS:NUM_EYEBROW_PARAMS + NUM_FACE_PARAMS] |
|
return modules[Network.face_morpher.name].forward(input_image, face_pose) |
|
elif key == Branch.face_morphed_full.name: |
|
face_morpher_output = self.get_output(Network.face_morpher.outputs_key, modules, batch, outputs) |
|
face_morphed_image = face_morpher_output[0] |
|
input_image = batch[0].clone() |
|
input_image[:, :, 32:32 + 192, 32 + 128:32 + 192 + 128] = face_morphed_image |
|
return [input_image] |
|
elif key == Branch.face_morphed_half.name: |
|
face_morphed_full = self.get_output(Branch.face_morphed_full.name, modules, batch, outputs)[0] |
|
return [ |
|
interpolate(face_morphed_full, size=(256, 256), mode='bilinear', align_corners=False) |
|
] |
|
elif key == Network.two_algo_face_body_rotator.outputs_key: |
|
face_morphed_half = self.get_output(Branch.face_morphed_half.name, modules, batch, outputs)[0] |
|
rotation_pose = batch[1][:, NUM_EYEBROW_PARAMS + NUM_FACE_PARAMS:] |
|
return modules[Network.two_algo_face_body_rotator.name].forward(face_morphed_half, rotation_pose) |
|
elif key == Network.editor.outputs_key: |
|
input_original_image = self.get_output(Branch.face_morphed_full.name, modules, batch, outputs)[0] |
|
rotator_outputs = self.get_output( |
|
Network.two_algo_face_body_rotator.outputs_key, modules, batch, outputs) |
|
half_warped_image = rotator_outputs[TwoAlgoFaceBodyRotator05.WARPED_IMAGE_INDEX] |
|
full_warped_image = interpolate( |
|
half_warped_image, size=(512, 512), mode='bilinear', align_corners=False) |
|
half_grid_change = rotator_outputs[TwoAlgoFaceBodyRotator05.GRID_CHANGE_INDEX] |
|
full_grid_change = interpolate( |
|
half_grid_change, size=(512, 512), mode='bilinear', align_corners=False) |
|
rotation_pose = batch[1][:, NUM_EYEBROW_PARAMS + NUM_FACE_PARAMS:] |
|
return modules[Network.editor.name].forward( |
|
input_original_image, full_warped_image, full_grid_change, rotation_pose) |
|
elif key == Branch.all_outputs.name: |
|
editor_output = self.get_output(Network.editor.outputs_key, modules, batch, outputs) |
|
rotater_output = self.get_output(Network.two_algo_face_body_rotator.outputs_key, modules, batch, outputs) |
|
face_morpher_output = self.get_output(Network.face_morpher.outputs_key, modules, batch, outputs) |
|
eyebrow_morphing_combiner_output = self.get_output( |
|
Network.eyebrow_morphing_combiner.outputs_key, modules, batch, outputs) |
|
eyebrow_decomposer_output = self.get_output( |
|
Network.eyebrow_decomposer.outputs_key, modules, batch, outputs) |
|
output = editor_output \ |
|
+ rotater_output \ |
|
+ face_morpher_output \ |
|
+ eyebrow_morphing_combiner_output \ |
|
+ eyebrow_decomposer_output |
|
return output |
|
else: |
|
raise RuntimeError("Unsupported key: " + key) |
|
|
|
|
|
def load_eyebrow_decomposer(file_name: str): |
|
factory = EyebrowDecomposer00Factory( |
|
EyebrowDecomposer00Args( |
|
image_size=128, |
|
image_channels=4, |
|
start_channels=64, |
|
bottleneck_image_size=16, |
|
num_bottleneck_blocks=6, |
|
max_channels=512, |
|
block_args=BlockArgs( |
|
initialization_method='he', |
|
use_spectral_norm=False, |
|
normalization_layer_factory=InstanceNorm2dFactory(), |
|
nonlinearity_factory=ReLUFactory(inplace=True)))) |
|
print("Loading the eyebrow decomposer ... ", end="") |
|
module = factory.create() |
|
module.load_state_dict(torch_load(file_name)) |
|
print("DONE!!!") |
|
return module |
|
|
|
|
|
def load_eyebrow_morphing_combiner(file_name: str): |
|
factory = EyebrowMorphingCombiner00Factory( |
|
EyebrowMorphingCombiner00Args( |
|
image_size=128, |
|
image_channels=4, |
|
start_channels=64, |
|
num_pose_params=12, |
|
bottleneck_image_size=16, |
|
num_bottleneck_blocks=6, |
|
max_channels=512, |
|
block_args=BlockArgs( |
|
initialization_method='he', |
|
use_spectral_norm=False, |
|
normalization_layer_factory=InstanceNorm2dFactory(), |
|
nonlinearity_factory=ReLUFactory(inplace=True)))) |
|
print("Loading the eyebrow morphing conbiner ... ", end="") |
|
module = factory.create() |
|
module.load_state_dict(torch_load(file_name)) |
|
print("DONE!!!") |
|
return module |
|
|
|
|
|
def load_face_morpher(file_name: str): |
|
factory = FaceMorpher08Factory( |
|
FaceMorpher08Args( |
|
image_size=192, |
|
image_channels=4, |
|
num_expression_params=27, |
|
start_channels=64, |
|
bottleneck_image_size=24, |
|
num_bottleneck_blocks=6, |
|
max_channels=512, |
|
block_args=BlockArgs( |
|
initialization_method='he', |
|
use_spectral_norm=False, |
|
normalization_layer_factory=InstanceNorm2dFactory(), |
|
nonlinearity_factory=ReLUFactory(inplace=False)))) |
|
print("Loading the face morpher ... ", end="") |
|
module = factory.create() |
|
module.load_state_dict(torch_load(file_name)) |
|
print("DONE!!!") |
|
return module |
|
|
|
|
|
def load_two_algo_generator(file_name) -> Module: |
|
module = TwoAlgoFaceBodyRotator05( |
|
TwoAlgoFaceBodyRotator05Args( |
|
image_size=256, |
|
image_channels=4, |
|
start_channels=64, |
|
num_pose_params=6, |
|
bottleneck_image_size=32, |
|
num_bottleneck_blocks=6, |
|
max_channels=512, |
|
upsample_mode='nearest', |
|
block_args=BlockArgs( |
|
initialization_method='he', |
|
use_spectral_norm=False, |
|
normalization_layer_factory=InstanceNorm2dFactory(), |
|
nonlinearity_factory=LeakyReLUFactory(inplace=False, negative_slope=0.1)))) |
|
print("Loading the face-body rotator ... ", end="") |
|
module.load_state_dict(torch_load(file_name)) |
|
print("DONE!!!") |
|
return module |
|
|
|
|
|
def load_editor(file_name) -> Module: |
|
module = Editor07( |
|
Editor07Args( |
|
image_size=512, |
|
image_channels=4, |
|
num_pose_params=6, |
|
start_channels=32, |
|
bottleneck_image_size=64, |
|
num_bottleneck_blocks=6, |
|
max_channels=512, |
|
upsampling_mode='nearest', |
|
block_args=BlockArgs( |
|
initialization_method='he', |
|
use_spectral_norm=False, |
|
normalization_layer_factory=InstanceNorm2dFactory(), |
|
nonlinearity_factory=LeakyReLUFactory(inplace=False, negative_slope=0.1)))) |
|
print("Loading the combiner ... ", end="") |
|
module.load_state_dict(torch_load(file_name)) |
|
print("DONE!!!") |
|
return module |
|
|
|
|
|
def get_pose_parameters(): |
|
return PoseParameters.Builder() \ |
|
.add_parameter_group("eyebrow_troubled", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eyebrow_angry", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eyebrow_lowered", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eyebrow_raised", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eyebrow_happy", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eyebrow_serious", PoseParameterCategory.EYEBROW, arity=2) \ |
|
.add_parameter_group("eye_wink", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("eye_happy_wink", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("eye_surprised", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("eye_relaxed", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("eye_unimpressed", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("eye_raised_lower_eyelid", PoseParameterCategory.EYE, arity=2) \ |
|
.add_parameter_group("iris_small", PoseParameterCategory.IRIS_MORPH, arity=2) \ |
|
.add_parameter_group("mouth_aaa", PoseParameterCategory.MOUTH, arity=1, default_value=1.0) \ |
|
.add_parameter_group("mouth_iii", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("mouth_uuu", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("mouth_eee", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("mouth_ooo", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("mouth_delta", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("mouth_lowered_corner", PoseParameterCategory.MOUTH, arity=2) \ |
|
.add_parameter_group("mouth_raised_corner", PoseParameterCategory.MOUTH, arity=2) \ |
|
.add_parameter_group("mouth_smirk", PoseParameterCategory.MOUTH, arity=1) \ |
|
.add_parameter_group("iris_rotation_x", PoseParameterCategory.IRIS_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("iris_rotation_y", PoseParameterCategory.IRIS_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("head_x", PoseParameterCategory.FACE_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("head_y", PoseParameterCategory.FACE_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("neck_z", PoseParameterCategory.FACE_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("body_y", PoseParameterCategory.BODY_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("body_z", PoseParameterCategory.BODY_ROTATION, arity=1, range=(-1.0, 1.0)) \ |
|
.add_parameter_group("breathing", PoseParameterCategory.BREATHING, arity=1, range=(0.0, 1.0)) \ |
|
.build() |
|
|
|
|
|
def create_poser( |
|
device: torch.device, |
|
module_file_names: Optional[Dict[str, str]] = None, |
|
eyebrow_morphed_image_index: int = EyebrowMorphingCombiner00.EYEBROW_IMAGE_NO_COMBINE_ALPHA_INDEX, |
|
default_output_index: int = 0) -> GeneralPoser02: |
|
if module_file_names is None: |
|
module_file_names = {} |
|
if Network.eyebrow_decomposer.name not in module_file_names: |
|
dir = "talkinghead/tha3/models/standard_float" |
|
file_name = dir + "/eyebrow_decomposer.pt" |
|
module_file_names[Network.eyebrow_decomposer.name] = file_name |
|
if Network.eyebrow_morphing_combiner.name not in module_file_names: |
|
dir = "talkinghead/tha3/models/standard_float" |
|
file_name = dir + "/eyebrow_morphing_combiner.pt" |
|
module_file_names[Network.eyebrow_morphing_combiner.name] = file_name |
|
if Network.face_morpher.name not in module_file_names: |
|
dir = "talkinghead/tha3/models/standard_float" |
|
file_name = dir + "/face_morpher.pt" |
|
module_file_names[Network.face_morpher.name] = file_name |
|
if Network.two_algo_face_body_rotator.name not in module_file_names: |
|
dir = "talkinghead/tha3/models/standard_float" |
|
file_name = dir + "/two_algo_face_body_rotator.pt" |
|
module_file_names[Network.two_algo_face_body_rotator.name] = file_name |
|
if Network.editor.name not in module_file_names: |
|
dir = "talkinghead/tha3/models/standard_float" |
|
file_name = dir + "/editor.pt" |
|
module_file_names[Network.editor.name] = file_name |
|
|
|
loaders = { |
|
Network.eyebrow_decomposer.name: |
|
lambda: load_eyebrow_decomposer(module_file_names[Network.eyebrow_decomposer.name]), |
|
Network.eyebrow_morphing_combiner.name: |
|
lambda: load_eyebrow_morphing_combiner(module_file_names[Network.eyebrow_morphing_combiner.name]), |
|
Network.face_morpher.name: |
|
lambda: load_face_morpher(module_file_names[Network.face_morpher.name]), |
|
Network.two_algo_face_body_rotator.name: |
|
lambda: load_two_algo_generator(module_file_names[Network.two_algo_face_body_rotator.name]), |
|
Network.editor.name: |
|
lambda: load_editor(module_file_names[Network.editor.name]), |
|
} |
|
return GeneralPoser02( |
|
image_size=512, |
|
module_loaders=loaders, |
|
pose_parameters=get_pose_parameters().get_pose_parameter_groups(), |
|
output_list_func=FiveStepPoserComputationProtocol(eyebrow_morphed_image_index).compute_func(), |
|
subrect=None, |
|
device=device, |
|
output_length=29, |
|
default_output_index=default_output_index) |
|
|
|
|
|
if __name__ == "__main__": |
|
device = torch.device('cuda') |
|
poser = create_poser(device) |
|
|
|
image = torch.zeros(1, 4, 512, 512, device=device) |
|
pose = torch.zeros(1, 45, device=device) |
|
|
|
repeat = 100 |
|
acc = 0.0 |
|
for i in range(repeat + 2): |
|
start = torch.cuda.Event(enable_timing=True) |
|
end = torch.cuda.Event(enable_timing=True) |
|
|
|
start.record() |
|
poser.pose(image, pose) |
|
end.record() |
|
torch.cuda.synchronize() |
|
if i >= 2: |
|
elapsed_time = start.elapsed_time(end) |
|
print("%d:" % i, elapsed_time) |
|
acc = acc + elapsed_time |
|
|
|
print("average:", acc / repeat) |
|
|