# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import mmap from pathlib import Path import io from typing import BinaryIO, List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from fairseq.data.audio.waveform_transforms import CompositeAudioWaveformTransform SF_AUDIO_FILE_EXTENSIONS = {".wav", ".flac", ".ogg"} FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS = {".npy", ".wav", ".flac", ".ogg"} def convert_waveform( waveform: Union[np.ndarray, torch.Tensor], sample_rate: int, normalize_volume: bool = False, to_mono: bool = False, to_sample_rate: Optional[int] = None, ) -> Tuple[Union[np.ndarray, torch.Tensor], int]: """convert a waveform: - to a target sample rate - from multi-channel to mono channel - volume normalization Args: waveform (numpy.ndarray or torch.Tensor): 2D original waveform (channels x length) sample_rate (int): original sample rate normalize_volume (bool): perform volume normalization to_mono (bool): convert to mono channel if having multiple channels to_sample_rate (Optional[int]): target sample rate Returns: waveform (numpy.ndarray): converted 2D waveform (channels x length) sample_rate (float): target sample rate """ try: import torchaudio.sox_effects as ta_sox except ImportError: raise ImportError("Please install torchaudio: pip install torchaudio") effects = [] if normalize_volume: effects.append(["gain", "-n"]) if to_sample_rate is not None and to_sample_rate != sample_rate: effects.append(["rate", f"{to_sample_rate}"]) if to_mono and waveform.shape[0] > 1: effects.append(["channels", "1"]) if len(effects) > 0: is_np_input = isinstance(waveform, np.ndarray) _waveform = torch.from_numpy(waveform) if is_np_input else waveform converted, converted_sample_rate = ta_sox.apply_effects_tensor( _waveform, sample_rate, effects ) if is_np_input: converted = converted.numpy() return converted, converted_sample_rate return waveform, sample_rate def get_waveform( path_or_fp: Union[str, BinaryIO], normalization: bool = True, mono: bool = True, frames: int = -1, start: int = 0, always_2d: bool = True, output_sample_rate: Optional[int] = None, normalize_volume: bool = False, waveform_transforms: Optional[CompositeAudioWaveformTransform] = None, ) -> Tuple[np.ndarray, int]: """Get the waveform and sample rate of a 16-bit WAV/FLAC/OGG Vorbis audio. Args: path_or_fp (str or BinaryIO): the path or file-like object normalization (bool): normalize values to [-1, 1] (Default: True) mono (bool): convert multi-channel audio to mono-channel one frames (int): the number of frames to read. (-1 for reading all) start (int): Where to start reading. A negative value counts from the end. always_2d (bool): always return 2D array even for mono-channel audios output_sample_rate (Optional[int]): output sample rate normalize_volume (bool): normalize volume Returns: waveform (numpy.ndarray): 1D or 2D waveform (channels x length) sample_rate (float): sample rate """ if isinstance(path_or_fp, str): ext = Path(path_or_fp).suffix if ext not in SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f"Unsupported audio format: {ext}") try: import soundfile as sf except ImportError: raise ImportError("Please install soundfile: pip install soundfile") waveform, sample_rate = sf.read( path_or_fp, dtype="float32", always_2d=True, frames=frames, start=start ) waveform = waveform.T # T x C -> C x T waveform, sample_rate = convert_waveform( waveform, sample_rate, normalize_volume=normalize_volume, to_mono=mono, to_sample_rate=output_sample_rate, ) if not normalization: waveform *= 2**15 # denormalized to 16-bit signed integers if waveform_transforms is not None: waveform, sample_rate = waveform_transforms(waveform, sample_rate) if not always_2d: waveform = waveform.squeeze(axis=0) return waveform, sample_rate def get_features_from_npy_or_audio(path, waveform_transforms=None): ext = Path(path).suffix if ext not in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f'Unsupported file format for "{path}"') return ( np.load(path) if ext == ".npy" else get_fbank(path, waveform_transforms=waveform_transforms) ) def get_features_or_waveform_from_stored_zip( path, byte_offset, byte_size, need_waveform=False, use_sample_rate=None, waveform_transforms=None, ): assert path.endswith(".zip") data = read_from_stored_zip(path, byte_offset, byte_size) f = io.BytesIO(data) if is_npy_data(data): features_or_waveform = np.load(f) elif is_sf_audio_data(data): features_or_waveform = ( get_waveform( f, always_2d=False, output_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, )[0] if need_waveform else get_fbank(f, waveform_transforms=waveform_transforms) ) else: raise ValueError(f'Unknown file format for "{path}"') return features_or_waveform def get_features_or_waveform( path: str, need_waveform=False, use_sample_rate=None, waveform_transforms=None ): """Get speech features from .npy file or waveform from .wav/.flac file. The file may be inside an uncompressed ZIP file and is accessed via byte offset and length. Args: path (str): File path in the format of "<.npy/.wav/.flac path>" or "::". need_waveform (bool): return waveform instead of features. use_sample_rate (int): change sample rate for the input wave file Returns: features_or_waveform (numpy.ndarray): speech features or waveform. """ _path, slice_ptr = parse_path(path) if len(slice_ptr) == 0: if need_waveform: return get_waveform( _path, always_2d=False, output_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, )[0] return get_features_from_npy_or_audio( _path, waveform_transforms=waveform_transforms ) elif len(slice_ptr) == 2: features_or_waveform = get_features_or_waveform_from_stored_zip( _path, slice_ptr[0], slice_ptr[1], need_waveform=need_waveform, use_sample_rate=use_sample_rate, waveform_transforms=waveform_transforms, ) else: raise ValueError(f"Invalid path: {path}") return features_or_waveform def _get_kaldi_fbank( waveform: np.ndarray, sample_rate: int, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via PyKaldi.""" try: from kaldi.feat.fbank import Fbank, FbankOptions from kaldi.feat.mel import MelBanksOptions from kaldi.feat.window import FrameExtractionOptions from kaldi.matrix import Vector mel_opts = MelBanksOptions() mel_opts.num_bins = n_bins frame_opts = FrameExtractionOptions() frame_opts.samp_freq = sample_rate opts = FbankOptions() opts.mel_opts = mel_opts opts.frame_opts = frame_opts fbank = Fbank(opts=opts) features = fbank.compute(Vector(waveform.squeeze()), 1.0).numpy() return features except ImportError: return None def _get_torchaudio_fbank( waveform: np.ndarray, sample_rate, n_bins=80 ) -> Optional[np.ndarray]: """Get mel-filter bank features via TorchAudio.""" try: import torchaudio.compliance.kaldi as ta_kaldi waveform = torch.from_numpy(waveform) features = ta_kaldi.fbank( waveform, num_mel_bins=n_bins, sample_frequency=sample_rate ) return features.numpy() except ImportError: return None def get_fbank( path_or_fp: Union[str, BinaryIO], n_bins=80, waveform_transforms=None ) -> np.ndarray: """Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi (faster CPP implementation) to TorchAudio (Python implementation). Note that Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized.""" waveform, sample_rate = get_waveform( path_or_fp, normalization=False, waveform_transforms=waveform_transforms ) features = _get_kaldi_fbank(waveform, sample_rate, n_bins) if features is None: features = _get_torchaudio_fbank(waveform, sample_rate, n_bins) if features is None: raise ImportError( "Please install pyKaldi or torchaudio to enable " "online filterbank feature extraction" ) return features def is_npy_data(data: bytes) -> bool: return data[0] == 147 and data[1] == 78 def is_sf_audio_data(data: bytes) -> bool: is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70 is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97 is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103 return is_wav or is_flac or is_ogg def mmap_read(path: str, offset: int, length: int) -> bytes: with open(path, "rb") as f: with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_o: data = mmap_o[offset : offset + length] return data def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes: return mmap_read(zip_path, offset, length) def parse_path(path: str) -> Tuple[str, List[int]]: """Parse data path which is either a path to 1. a .npy/.wav/.flac/.ogg file 2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" Args: path (str): the data path to parse Returns: file_path (str): the file path slice_ptr (list of int): empty in case 1; byte offset and length for the slice in case 2 """ if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: _path, slice_ptr = path, [] else: _path, *slice_ptr = path.split(":") if not Path(_path).is_file(): raise FileNotFoundError(f"File not found: {_path}") assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" slice_ptr = [int(i) for i in slice_ptr] return _path, slice_ptr def get_window(window_fn: callable, n_fft: int, win_length: int) -> torch.Tensor: padding = n_fft - win_length assert padding >= 0 return F.pad(window_fn(win_length), (padding // 2, padding - padding // 2)) def get_fourier_basis(n_fft: int) -> torch.Tensor: basis = np.fft.fft(np.eye(n_fft)) basis = np.vstack( [np.real(basis[: n_fft // 2 + 1, :]), np.imag(basis[: n_fft // 2 + 1, :])] ) return torch.from_numpy(basis).float() def get_mel_filters( sample_rate: int, n_fft: int, n_mels: int, f_min: float, f_max: float ) -> torch.Tensor: try: import librosa except ImportError: raise ImportError("Please install librosa: pip install librosa") basis = librosa.filters.mel(sample_rate, n_fft, n_mels, f_min, f_max) return torch.from_numpy(basis).float() class TTSSpectrogram(torch.nn.Module): def __init__( self, n_fft: int, win_length: int, hop_length: int, window_fn: callable = torch.hann_window, return_phase: bool = False, ) -> None: super(TTSSpectrogram, self).__init__() self.n_fft = n_fft self.hop_length = hop_length self.return_phase = return_phase basis = get_fourier_basis(n_fft).unsqueeze(1) basis *= get_window(window_fn, n_fft, win_length) self.register_buffer("basis", basis) def forward( self, waveform: torch.Tensor ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: padding = (self.n_fft // 2, self.n_fft // 2) x = F.pad(waveform.unsqueeze(1), padding, mode="reflect") x = F.conv1d(x, self.basis, stride=self.hop_length) real_part = x[:, : self.n_fft // 2 + 1, :] imag_part = x[:, self.n_fft // 2 + 1 :, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) if self.return_phase: phase = torch.atan2(imag_part, real_part) return magnitude, phase return magnitude class TTSMelScale(torch.nn.Module): def __init__( self, n_mels: int, sample_rate: int, f_min: float, f_max: float, n_stft: int ) -> None: super(TTSMelScale, self).__init__() basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max) self.register_buffer("basis", basis) def forward(self, specgram: torch.Tensor) -> torch.Tensor: return torch.matmul(self.basis, specgram)