# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re import typing as tp from collections import Counter, deque from dataclasses import dataclass from bitarray import bitarray, util from fairseq.data import Dictionary # basically we have to write to addressable bytes for the memory mapped # dataset loader. Sentences that get encoded to a length that is not a # multiple of BLOCKSIZE (a byte) will be padded to fit. (see _pad in the coder) BLOCKSIZE = 8 class HuffmanCoder: def __init__( self, root: "HuffmanNode", bos="", pad="", eos="", unk="" ): self.root = root self.table = root.code_table() self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos def _pad(self, a: bitarray) -> bitarray: """ bitpadding, 1 then 0. If the array is already a multiple of blocksize, we add a full block. """ pad_len = BLOCKSIZE - (len(a) % BLOCKSIZE) - 1 padding = bitarray("1" + "0" * pad_len) return a + padding def _unpad(self, a: bitarray) -> bitarray: """ remove the bitpadding. There will be a set of 0s preceded by a 1 at the end of the bitarray, we remove that """ # count the 0 padding at the end until we find the first 1 # we want to remove the one too remove_cnt = util.rindex(a, 1) return a[:remove_cnt] def encode(self, iter: tp.List[str]) -> bytes: """ encode a list of tokens a return bytes. We use bitpadding to make sure the encoded bits fit in bytes. """ a = bitarray() for token in iter: code = self.get_code(token) if code is None: if self.unk_word is None: raise Exception(f"unknown token {token} cannot be encoded.") else: token = self.unk_word a = a + self.get_code(token) return self._pad(a).tobytes() def decode(self, bits: bytes) -> tp.Iterator["HuffmanNode"]: """ take bitpadded bytes and decode it to a set of leaves. You can then use each node to find the symbol/id """ a = bitarray() a.frombytes(bits) return self.root.decode(self._unpad(a)) def get_code(self, symbol: str) -> tp.Optional[bitarray]: node = self.get_node(symbol) return None if node is None else node.code def get_node(self, symbol: str) -> "HuffmanNode": return self.table.get(symbol) @classmethod def from_file( cls, filename: str, bos="", pad="", eos="", unk="", ) -> "HuffmanCoder": builder = HuffmanCodeBuilder.from_file(filename) return builder.build_code(bos=bos, pad=pad, eos=eos, unk=unk) def to_file(self, filename, sep="\t"): nodes = list(self.table.values()) nodes.sort(key=lambda n: n.id) with open(filename, "w", encoding="utf-8") as output: for n in nodes: output.write(f"{n.symbol}{sep}{n.count}\n") def __iter__(self): for n in self.table.values(): yield n def merge(self, other_coder: "HuffmanCoder") -> "HuffmanCoder": builder = HuffmanCodeBuilder() for n in self: builder.increment(n.symbol, n.count) for n in other_coder: builder.increment(n.symbol, n.count) return builder.build_code() def __eq__(self, other: "HuffmanCoder") -> bool: return self.table == other.table def __len__(self) -> int: return len(self.table) def __contains__(self, sym: str) -> bool: return sym in self.table def to_dictionary(self) -> Dictionary: dictionary = Dictionary(bos=self.bos, unk=self.unk, pad=self.pad, eos=self.eos) for n in self: dictionary.add_symbol(n.symbol, n=n.count) dictionary.finalize() return dictionary @dataclass class HuffmanNode: """ a node in a Huffman tree """ id: int count: int symbol: tp.Optional[str] = None left: tp.Optional["HuffmanNode"] = None right: tp.Optional["HuffmanNode"] = None code: tp.Optional[bitarray] = None def is_leaf(self) -> bool: return self.left is None and self.right is None def code_table( self, prefix: tp.Optional[bitarray] = None ) -> tp.Dict[str, "HuffmanNode"]: defaulted_prefix = prefix if prefix is not None else bitarray() if self.is_leaf(): self.code = ( defaulted_prefix if len(defaulted_prefix) > 0 else bitarray("0") ) # leaf could be the root if there is only one symbol return {self.symbol: self} codes_right = self.right.code_table(defaulted_prefix + bitarray([0])) codes_left = self.left.code_table(defaulted_prefix + bitarray([1])) return {**codes_left, **codes_right} def decode(self, bits: bitarray) -> tp.Iterator["HuffmanNode"]: current_node = self for bit in bits: if bit == 0: # go right current_node = current_node.right else: # go left current_node = current_node.left if current_node is None: # we shouldn't be on a leaf here raise Exception("fell off a leaf") if current_node.is_leaf(): yield current_node current_node = self if current_node != self: raise Exception("couldn't decode all the bits") class HuffmanCodeBuilder: """ build a dictionary with occurence count and then build the Huffman code for it. """ def __init__(self): self.symbols = Counter() def add_symbols(self, *syms) -> None: self.symbols.update(syms) def increment(self, symbol: str, cnt: int) -> None: self.symbols[symbol] += cnt @classmethod def from_file(cls, filename): c = cls() with open(filename, "r", encoding="utf-8") as input: for line in input: split = re.split(r"[\s]+", line) c.increment(split[0], int(split[1])) return c def to_file(self, filename, sep="\t"): with open(filename, "w", encoding="utf-8") as output: for (tok, cnt) in self.symbols.most_common(): output.write(f"{tok}{sep}{cnt}\n") def _smallest(self, q1: deque, q2: deque) -> HuffmanNode: if len(q1) == 0: return q2.pop() if len(q2) == 0: return q1.pop() if q1[-1].count < q2[-1].count: return q1.pop() return q2.pop() def __add__(self, c: "HuffmanCodeBuilder") -> "HuffmanCodeBuilder": new_c = self.symbols + c.symbols new_b = HuffmanCodeBuilder() new_b.symbols = new_c return new_b def build_code( self, bos="", pad="", eos="", unk="", ) -> HuffmanCoder: assert len(self.symbols) > 0, "cannot build code from empty list of symbols" if self.symbols[bos] == 0: self.add_symbols(bos) if self.symbols[pad] == 0: self.add_symbols(pad) if self.symbols[eos] == 0: self.add_symbols(eos) if self.symbols[unk] == 0: self.add_symbols(unk) node_id = 0 leaves_queue = deque( [ HuffmanNode(symbol=symbol, count=count, id=idx) for idx, (symbol, count) in enumerate(self.symbols.most_common()) ] ) # left are the most common, right are the least common if len(leaves_queue) == 1: root = leaves_queue.pop() root.id = 0 return HuffmanCoder(root) nodes_queue = deque() while len(leaves_queue) > 0 or len(nodes_queue) != 1: # get the lowest two nodes at the head of each queue node1 = self._smallest(leaves_queue, nodes_queue) node2 = self._smallest(leaves_queue, nodes_queue) # add new node nodes_queue.appendleft( HuffmanNode( count=node1.count + node2.count, left=node1, right=node2, id=node_id ) ) node_id += 1 # we are left with the root return HuffmanCoder(nodes_queue.pop(), bos=bos, pad=pad, eos=eos, unk=unk)