# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
import typing as tp
from collections import Counter, deque
from dataclasses import dataclass
from bitarray import bitarray, util
from fairseq.data import Dictionary
# basically we have to write to addressable bytes for the memory mapped
# dataset loader. Sentences that get encoded to a length that is not a
# multiple of BLOCKSIZE (a byte) will be padded to fit. (see _pad in the coder)
BLOCKSIZE = 8
class HuffmanCoder:
def __init__(
self, root: "HuffmanNode", bos="", pad="", eos="", unk=""
):
self.root = root
self.table = root.code_table()
self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
def _pad(self, a: bitarray) -> bitarray:
"""
bitpadding, 1 then 0.
If the array is already a multiple of blocksize, we add a full block.
"""
pad_len = BLOCKSIZE - (len(a) % BLOCKSIZE) - 1
padding = bitarray("1" + "0" * pad_len)
return a + padding
def _unpad(self, a: bitarray) -> bitarray:
"""
remove the bitpadding.
There will be a set of 0s preceded by a 1 at the end of the bitarray, we remove that
"""
# count the 0 padding at the end until we find the first 1
# we want to remove the one too
remove_cnt = util.rindex(a, 1)
return a[:remove_cnt]
def encode(self, iter: tp.List[str]) -> bytes:
"""
encode a list of tokens a return bytes. We use bitpadding to make sure the encoded bits fit in bytes.
"""
a = bitarray()
for token in iter:
code = self.get_code(token)
if code is None:
if self.unk_word is None:
raise Exception(f"unknown token {token} cannot be encoded.")
else:
token = self.unk_word
a = a + self.get_code(token)
return self._pad(a).tobytes()
def decode(self, bits: bytes) -> tp.Iterator["HuffmanNode"]:
"""
take bitpadded bytes and decode it to a set of leaves. You can then use each node to find the symbol/id
"""
a = bitarray()
a.frombytes(bits)
return self.root.decode(self._unpad(a))
def get_code(self, symbol: str) -> tp.Optional[bitarray]:
node = self.get_node(symbol)
return None if node is None else node.code
def get_node(self, symbol: str) -> "HuffmanNode":
return self.table.get(symbol)
@classmethod
def from_file(
cls,
filename: str,
bos="",
pad="",
eos="",
unk="",
) -> "HuffmanCoder":
builder = HuffmanCodeBuilder.from_file(filename)
return builder.build_code(bos=bos, pad=pad, eos=eos, unk=unk)
def to_file(self, filename, sep="\t"):
nodes = list(self.table.values())
nodes.sort(key=lambda n: n.id)
with open(filename, "w", encoding="utf-8") as output:
for n in nodes:
output.write(f"{n.symbol}{sep}{n.count}\n")
def __iter__(self):
for n in self.table.values():
yield n
def merge(self, other_coder: "HuffmanCoder") -> "HuffmanCoder":
builder = HuffmanCodeBuilder()
for n in self:
builder.increment(n.symbol, n.count)
for n in other_coder:
builder.increment(n.symbol, n.count)
return builder.build_code()
def __eq__(self, other: "HuffmanCoder") -> bool:
return self.table == other.table
def __len__(self) -> int:
return len(self.table)
def __contains__(self, sym: str) -> bool:
return sym in self.table
def to_dictionary(self) -> Dictionary:
dictionary = Dictionary(bos=self.bos, unk=self.unk, pad=self.pad, eos=self.eos)
for n in self:
dictionary.add_symbol(n.symbol, n=n.count)
dictionary.finalize()
return dictionary
@dataclass
class HuffmanNode:
"""
a node in a Huffman tree
"""
id: int
count: int
symbol: tp.Optional[str] = None
left: tp.Optional["HuffmanNode"] = None
right: tp.Optional["HuffmanNode"] = None
code: tp.Optional[bitarray] = None
def is_leaf(self) -> bool:
return self.left is None and self.right is None
def code_table(
self, prefix: tp.Optional[bitarray] = None
) -> tp.Dict[str, "HuffmanNode"]:
defaulted_prefix = prefix if prefix is not None else bitarray()
if self.is_leaf():
self.code = (
defaulted_prefix if len(defaulted_prefix) > 0 else bitarray("0")
) # leaf could be the root if there is only one symbol
return {self.symbol: self}
codes_right = self.right.code_table(defaulted_prefix + bitarray([0]))
codes_left = self.left.code_table(defaulted_prefix + bitarray([1]))
return {**codes_left, **codes_right}
def decode(self, bits: bitarray) -> tp.Iterator["HuffmanNode"]:
current_node = self
for bit in bits:
if bit == 0: # go right
current_node = current_node.right
else: # go left
current_node = current_node.left
if current_node is None:
# we shouldn't be on a leaf here
raise Exception("fell off a leaf")
if current_node.is_leaf():
yield current_node
current_node = self
if current_node != self:
raise Exception("couldn't decode all the bits")
class HuffmanCodeBuilder:
"""
build a dictionary with occurence count and then build the Huffman code for it.
"""
def __init__(self):
self.symbols = Counter()
def add_symbols(self, *syms) -> None:
self.symbols.update(syms)
def increment(self, symbol: str, cnt: int) -> None:
self.symbols[symbol] += cnt
@classmethod
def from_file(cls, filename):
c = cls()
with open(filename, "r", encoding="utf-8") as input:
for line in input:
split = re.split(r"[\s]+", line)
c.increment(split[0], int(split[1]))
return c
def to_file(self, filename, sep="\t"):
with open(filename, "w", encoding="utf-8") as output:
for (tok, cnt) in self.symbols.most_common():
output.write(f"{tok}{sep}{cnt}\n")
def _smallest(self, q1: deque, q2: deque) -> HuffmanNode:
if len(q1) == 0:
return q2.pop()
if len(q2) == 0:
return q1.pop()
if q1[-1].count < q2[-1].count:
return q1.pop()
return q2.pop()
def __add__(self, c: "HuffmanCodeBuilder") -> "HuffmanCodeBuilder":
new_c = self.symbols + c.symbols
new_b = HuffmanCodeBuilder()
new_b.symbols = new_c
return new_b
def build_code(
self,
bos="",
pad="",
eos="",
unk="",
) -> HuffmanCoder:
assert len(self.symbols) > 0, "cannot build code from empty list of symbols"
if self.symbols[bos] == 0:
self.add_symbols(bos)
if self.symbols[pad] == 0:
self.add_symbols(pad)
if self.symbols[eos] == 0:
self.add_symbols(eos)
if self.symbols[unk] == 0:
self.add_symbols(unk)
node_id = 0
leaves_queue = deque(
[
HuffmanNode(symbol=symbol, count=count, id=idx)
for idx, (symbol, count) in enumerate(self.symbols.most_common())
]
) # left are the most common, right are the least common
if len(leaves_queue) == 1:
root = leaves_queue.pop()
root.id = 0
return HuffmanCoder(root)
nodes_queue = deque()
while len(leaves_queue) > 0 or len(nodes_queue) != 1:
# get the lowest two nodes at the head of each queue
node1 = self._smallest(leaves_queue, nodes_queue)
node2 = self._smallest(leaves_queue, nodes_queue)
# add new node
nodes_queue.appendleft(
HuffmanNode(
count=node1.count + node2.count, left=node1, right=node2, id=node_id
)
)
node_id += 1
# we are left with the root
return HuffmanCoder(nodes_queue.pop(), bos=bos, pad=pad, eos=eos, unk=unk)