# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import Dictionary, FairseqDataset, data_utils def collate( samples, pad_idx, eos_idx, vocab, left_pad_source=False, left_pad_target=False, input_feeding=True, pad_to_length=None, ): assert input_feeding if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx=None, # use eos_idx of each sample instead of vocab.eos() left_pad=left_pad, move_eos_to_beginning=move_eos_to_beginning, pad_to_length=pad_to_length, ) id = torch.LongTensor([s["id"] for s in samples]) src_tokens = merge( "source", left_pad=left_pad_source, pad_to_length=pad_to_length["source"] if pad_to_length is not None else None, ) # sort by descending source length src_lengths = torch.LongTensor([s["source"].numel() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = id.index_select(0, sort_order) src_tokens = src_tokens.index_select(0, sort_order) prev_output_tokens = None target = None if samples[0].get("target", None) is not None: target = merge( "target", left_pad=left_pad_target, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) target = target.index_select(0, sort_order) ntokens = sum(len(s["target"]) for s in samples) if input_feeding: # we create a shifted version of targets for feeding the # previous output token(s) into the next decoder step prev_output_tokens = merge( "target", left_pad=left_pad_target, move_eos_to_beginning=True, pad_to_length=pad_to_length["target"] if pad_to_length is not None else None, ) prev_output_tokens = prev_output_tokens.index_select(0, sort_order) else: ntokens = sum(len(s["source"]) for s in samples) batch = { "id": id, "ntokens": ntokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, "target": target, "target_lengths": torch.LongTensor([len(t) for t in target]), "nsentences": samples[0]["source"].size(0), "sort_order": sort_order, } if prev_output_tokens is not None: batch["net_input"]["prev_output_tokens"] = prev_output_tokens return batch class SpanMaskedTokensDataset(FairseqDataset): """ A wrapper around TokenBlockDataset for T5 dataset. Args: dataset (~torch.utils.data.Dataset): dataset to wrap vocab (~fairseq.data.Dictionary): vocabulary noise_density (float): fraction of the tokens to select as noise. mean_noise_span_length (float): mean noise span length. shuffle (bool, optional): shuffle the elements before batching. Default: ``True`` seed: Seed for random number generator for reproducibility. """ def __init__( self, dataset: torch.utils.data.Dataset, vocab: Dictionary, noise_density: float, mean_noise_span_length: float, shuffle: bool, seed: int = 1, ): self.dataset = dataset self.vocab = vocab self.seed = seed self.noise_density = noise_density self.mean_noise_span_length = mean_noise_span_length self.shuffle = shuffle self.epoch = 0 @property def can_reuse_epoch_itr_across_epochs(self): return True # only the noise changes, not item sizes def set_epoch(self, epoch, **unused): self.epoch = epoch def __getitem__(self, index): with data_utils.numpy_seed(self.seed, self.epoch, index): item = self.dataset[index] assert item[-1] == self.vocab.eos() noise_mask = self.random_spans_noise_mask(len(item)) source_sentinel_ids = self.create_sentinel_ids(noise_mask.astype(np.int8)) source = self.filter_input_ids(item, source_sentinel_ids) target_sentinel_ids = self.create_sentinel_ids( (~noise_mask).astype(np.int8) ) target = self.filter_input_ids(item, target_sentinel_ids) return { "id": index, "source": torch.from_numpy(source), "target": torch.from_numpy(target), } def random_spans_noise_mask(self, length): """ This function is copy of `random_spans_helper `__ . Noise mask consisting of random spans of noise tokens. The number of noise tokens and the number of noise spans and non-noise spans are determined deterministically as follows: num_noise_tokens = round(length * noise_density) num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length) Spans alternate between non-noise and noise, beginning with non-noise. Subject to the above restrictions, all masks are equally likely. Args: length: an int32 scalar (length of the incoming token sequence) Returns: a boolean tensor with shape [length] """ orig_length = length num_noise_tokens = int(np.round(length * self.noise_density)) # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens. num_noise_tokens = min(max(num_noise_tokens, 1), length - 1) num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length)) # avoid degeneracy by ensuring positive number of noise spans num_noise_spans = max(num_noise_spans, 1) num_nonnoise_tokens = length - num_noise_tokens # pick the lengths of the noise spans and the non-noise spans def _random_segmentation(num_items, num_segments): """ Partition a sequence of items randomly into non-empty segments. Args: num_items: an integer scalar > 0 num_segments: an integer scalar in [1, num_items] Returns: a Tensor with shape [num_segments] containing positive integers that add up to num_items """ mask_indices = np.arange(num_items - 1) < (num_segments - 1) np.random.shuffle(mask_indices) first_in_segment = np.pad(mask_indices, [[1, 0]]) segment_id = np.cumsum(first_in_segment) # count length of subsegments assuming that list is sorted _, segment_length = np.unique(segment_id, return_counts=True) return segment_length noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans) nonnoise_span_lengths = _random_segmentation( num_nonnoise_tokens, num_noise_spans ) interleaved_span_lengths = np.reshape( np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2], ) span_starts = np.cumsum(interleaved_span_lengths)[:-1] span_start_indicator = np.zeros((length,), dtype=np.int8) span_start_indicator[span_starts] = True span_num = np.cumsum(span_start_indicator) is_noise = np.equal(span_num % 2, 1) return is_noise[:orig_length] def create_sentinel_ids(self, mask_indices): """ Sentinel ids creation given the indices that should be masked. The start indices of each mask are replaced by the sentinel ids in increasing order. Consecutive mask indices to be deleted are replaced with `-1`. """ start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices sentinel_ids = np.where( start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices ) # making sure all sentinel tokens are unique over the example sentinel_ids = np.where(sentinel_ids != 0, len(self.vocab) - sentinel_ids, 0) sentinel_ids -= mask_indices - start_indices return sentinel_ids @staticmethod def filter_input_ids(input_ids, sentinel_ids): """ Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting. This will reduce the sequence length from `expanded_inputs_length` to `input_length`. """ input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids) # input_ids tokens and sentinel tokens are >= 0, tokens < 0 are # masked tokens coming after sentinel tokens and should be removed return input_ids_full[input_ids_full >= 0] def __len__(self): return len(self.dataset) def collater(self, samples, pad_to_length=None): """ Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch of data """ return collate( samples, self.vocab.pad(), self.vocab.eos(), self.vocab, pad_to_length=pad_to_length, ) def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" return self.dataset.sizes[index] def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return self.dataset.sizes[index] def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) else: indices = np.arange(len(self)) return indices[np.argsort(self.dataset.sizes[indices], kind="mergesort")] def prefetch(self, indices): self.src.prefetch(indices) self.tgt.prefetch(indices) @property def supports_prefetch(self): return ( hasattr(self.src, "supports_prefetch") and self.src.supports_prefetch and hasattr(self.tgt, "supports_prefetch") and self.tgt.supports_prefetch )