# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding from fairseq.modules import TransformerDecoderLayer from fairseq.modules.transformer_sentence_encoder import init_bert_params from .levenshtein_utils import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _get_del_targets, _get_ins_targets, _skip, _skip_encoder_out, ) @register_model("levenshtein_transformer") class LevenshteinTransformerModel(FairseqNATModel): @property def allow_length_beam(self): return False @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) parser.add_argument( "--early-exit", default="6,6,6", type=str, help="number of decoder layers before word_del, mask_ins, word_ins", ) parser.add_argument( "--no-share-discriminator", action="store_true", help="separate parameters for discriminator", ) parser.add_argument( "--no-share-maskpredictor", action="store_true", help="separate parameters for mask-predictor", ) parser.add_argument( "--share-discriminator-maskpredictor", action="store_true", help="share the parameters for both mask-predictor and discriminator", ) parser.add_argument( "--sampling-for-deletion", action="store_true", help="instead of argmax, use sampling to predict the tokens", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = LevenshteinTransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert tgt_tokens is not None, "forward function only supports training." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # generate training labels for insertion masked_tgt_masks, masked_tgt_tokens, mask_ins_targets = _get_ins_targets( prev_output_tokens, tgt_tokens, self.pad, self.unk ) mask_ins_targets = mask_ins_targets.clamp(min=0, max=255) # for safe prediction mask_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) mask_ins_out, _ = self.decoder.forward_mask_ins( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_out, _ = self.decoder.forward_word_ins( normalize=False, prev_output_tokens=masked_tgt_tokens, encoder_out=encoder_out, ) # make online prediction if self.decoder.sampling_for_deletion: word_predictions = torch.multinomial( F.softmax(word_ins_out, -1).view(-1, word_ins_out.size(-1)), 1 ).view(word_ins_out.size(0), -1) else: word_predictions = F.log_softmax(word_ins_out, dim=-1).max(2)[1] word_predictions.masked_scatter_( ~masked_tgt_masks, tgt_tokens[~masked_tgt_masks] ) # generate training labels for deletion word_del_targets = _get_del_targets(word_predictions, tgt_tokens, self.pad) word_del_out, _ = self.decoder.forward_word_del( normalize=False, prev_output_tokens=word_predictions, encoder_out=encoder_out, ) word_del_masks = word_predictions.ne(self.pad) return { "mask_ins": { "out": mask_ins_out, "tgt": mask_ins_targets, "mask": mask_ins_masks, "ls": 0.01, }, "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": masked_tgt_masks, "ls": self.args.label_smoothing, "nll_loss": True, }, "word_del": { "out": word_del_out, "tgt": word_del_targets, "mask": word_del_masks, }, } def forward_decoder( self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs ): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn history = decoder_out.history bsz = output_tokens.size(0) if max_ratio is None: max_lens = torch.zeros_like(output_tokens).fill_(255) else: if not encoder_out["encoder_padding_mask"]: max_src_len = encoder_out["encoder_out"].size(0) src_lens = encoder_out["encoder_out"].new(bsz).fill_(max_src_len) else: src_lens = (~encoder_out["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip word_del_score, word_del_attn = self.decoder.forward_word_del( normalize=True, prev_output_tokens=_skip(output_tokens, can_del_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_del_word), ) word_del_pred = word_del_score.max(-1)[1].bool() _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) if history is not None: history.append(output_tokens.clone()) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: mask_ins_score, _ = self.decoder.forward_mask_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_mask), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_mask), ) if eos_penalty > 0.0: mask_ins_score[:, :, 0] = mask_ins_score[:, :, 0] - eos_penalty mask_ins_pred = mask_ins_score.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) if history is not None: history.append(output_tokens.clone()) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: word_ins_score, word_ins_attn = self.decoder.forward_word_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_word), ) word_ins_score, word_ins_pred = word_ins_score.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) if history is not None: history.append(output_tokens.clone()) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): initial_output_tokens = src_tokens.new_zeros(src_tokens.size(0), 2) initial_output_tokens[:, 0] = self.bos initial_output_tokens[:, 1] = self.eos initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) class LevenshteinTransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) self.embed_mask_ins = Embedding(256, self.output_embed_dim * 2, None) self.embed_word_del = Embedding(2, self.output_embed_dim, None) # del_word, ins_mask, ins_word self.early_exit = [int(i) for i in args.early_exit.split(",")] assert len(self.early_exit) == 3 # copy layers for mask-predict/deletion self.layers_msk = None if getattr(args, "no_share_maskpredictor", False): self.layers_msk = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[1]) ] ) self.layers_del = None if getattr(args, "no_share_discriminator", False): self.layers_del = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[0]) ] ) if getattr(args, "share_discriminator_maskpredictor", False): assert getattr( args, "no_share_discriminator", False ), "must set saperate discriminator" self.layers_msk = self.layers_del def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, layers=None, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) layers = self.layers if layers is None else layers early_exit = len(layers) if early_exit is None else early_exit for _, layer in enumerate(layers[:early_exit]): x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} @ensemble_decoder def forward_mask_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[1], layers=self.layers_msk, **unused ) features_cat = torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) decoder_out = F.linear(features_cat, self.embed_mask_ins.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[2], layers=self.layers, **unused ) decoder_out = self.output_layer(features) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_del(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[0], layers=self.layers_del, **unused ) decoder_out = F.linear(features, self.embed_word_del.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @register_model_architecture("levenshtein_transformer", "levenshtein_transformer") def levenshtein_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.early_exit = getattr(args, "early_exit", "6,6,6") args.no_share_discriminator = getattr(args, "no_share_discriminator", False) args.no_share_maskpredictor = getattr(args, "no_share_maskpredictor", False) args.share_discriminator_maskpredictor = getattr( args, "share_discriminator_maskpredictor", False ) args.no_share_last_layer = getattr(args, "no_share_last_layer", False) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de" ) def levenshtein_transformer_wmt_en_de(args): levenshtein_base_architecture(args) # similar parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_vaswani_wmt_en_de_big" ) def levenshtein_transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) levenshtein_base_architecture(args) # default parameters used in tensor2tensor implementation @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de_big" ) def levenshtein_transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) levenshtein_transformer_vaswani_wmt_en_de_big(args)