# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional from omegaconf import II from fairseq import options, utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( DEFAULT_MIN_PARAMS_TO_WRAP, Embedding, TransformerDecoder, ) from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder from fairseq.utils import safe_getattr, safe_hasattr DEFAULT_MAX_TARGET_POSITIONS = 1024 @dataclass class TransformerLanguageModelConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_decoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last decoder block"}, ) adaptive_softmax_cutoff: Optional[str] = field( default=None, metadata={ "help": "comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion" }, ) adaptive_softmax_dropout: float = field( default=0, metadata={"help": "sets adaptive softmax dropout for the tail projections"}, ) adaptive_softmax_factor: float = field( default=4, metadata={"help": "adaptive input factor"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) character_embeddings: bool = field( default=False, metadata={ "help": "if set, uses character embedding convolutions to produce token embeddings" }, ) character_filters: str = field( default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", metadata={"help": "size of character embeddings"}, ) character_embedding_dim: int = field( default=4, metadata={"help": "size of character embeddings"} ) char_embedder_highway_layers: int = field( default=2, metadata={"help": "number of highway layers for character token embeddder"}, ) adaptive_input: bool = field( default=False, metadata={"help": "if set, uses adaptive input"} ) adaptive_input_factor: float = field( default=4, metadata={"help": "adaptive input factor"} ) adaptive_input_cutoff: Optional[str] = field( default=None, metadata={"help": "comma separated list of adaptive input cutoff points."}, ) tie_adaptive_weights: bool = field( default=False, metadata={ "help": "if set, ties the weights of adaptive softmax and adaptive input" }, ) tie_adaptive_proj: bool = field( default=False, metadata={ "help": "if set, ties the projection weights of adaptive softmax and adaptive input" }, ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) decoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for decoder"} ) decoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) # config for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) quant_noise_pq: float = field( default=0.0, metadata={"help": "iterative PQ quantization noise at training time"}, ) quant_noise_pq_block_size: int = field( default=8, metadata={"help": "block size of quantization noise at training time"}, ) quant_noise_scalar: float = field( default=0.0, metadata={ "help": "scalar quantization noise and scalar quantization at training time" }, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) # config for "BASE Layers: Simplifying Training of Large, Sparse Models" base_layers: Optional[int] = field( default=0, metadata={"help": "number of BASE layers in total"} ) base_sublayers: Optional[int] = field( default=1, metadata={"help": "number of sublayers in each BASE layer"} ) base_shuffle: Optional[int] = field( default=1, metadata={"help": "shuffle tokens between workers before computing assignment"}, ) # NormFormer scale_fc: Optional[bool] = field( default=False, metadata={"help": "Insert LayerNorm between fully connected layers"}, ) scale_attn: Optional[bool] = field( default=False, metadata={"help": "Insert LayerNorm after attention"} ) scale_heads: Optional[bool] = field( default=False, metadata={"help": "Learn a scale coefficient for each attention head"}, ) scale_resids: Optional[bool] = field( default=False, metadata={"help": "Learn a scale coefficient for each residual connection"}, ) # xFormers arguments decoder_xformers_att_config: Optional[str] = field( default=None, metadata={ "help": "config for xFormers library attention, defined in xformers.components.attention.AttentionConfig", }, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") @register_model("transformer_lm", dataclass=TransformerLanguageModelConfig) class TransformerLanguageModel(FairseqLanguageModel): @classmethod def hub_models(cls): def moses_fastbpe(path): return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"} def spm(path): return {"path": path, "tokenizer": "space", "bpe": "sentencepiece"} return { "transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2", "transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2", "transformer_lm.wmt19.en": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2" ), "transformer_lm.wmt19.de": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2" ), "transformer_lm.wmt19.ru": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2" ), "transformer_lm.wmt20.en": spm( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.en.tar.gz" ), "transformer_lm.wmt20.ta": spm( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.ta.tar.gz" ), "transformer_lm.wmt20.iu.news": spm( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.news.tar.gz" ), "transformer_lm.wmt20.iu.nh": spm( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.nh.tar.gz" ), } def __init__(self, decoder): super().__init__(decoder) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if safe_getattr(args, "max_target_positions", None) is None: args.max_target_positions = safe_getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) if args.character_embeddings: embed_tokens = CharacterTokenEmbedder( task.source_dictionary, eval(args.character_filters), args.character_embedding_dim, args.decoder_embed_dim, args.char_embedder_highway_layers, ) elif args.adaptive_input: embed_tokens = AdaptiveInput( len(task.source_dictionary), task.source_dictionary.pad(), args.decoder_input_dim, args.adaptive_input_factor, args.decoder_embed_dim, options.eval_str_list(args.adaptive_input_cutoff, type=int), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) if args.tie_adaptive_weights: assert args.adaptive_input assert args.adaptive_input_factor == args.adaptive_softmax_factor assert ( args.adaptive_softmax_cutoff == args.adaptive_input_cutoff ), "{} != {}".format( args.adaptive_softmax_cutoff, args.adaptive_input_cutoff ) assert args.decoder_input_dim == args.decoder_output_dim decoder = TransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True ) return cls(decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens def base_lm_architecture(args): # backward compatibility for older model checkpoints if safe_hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if safe_hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = safe_getattr(args, "decoder_layers", 6) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = safe_getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = safe_getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = safe_getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", False) args.activation_fn = safe_getattr(args, "activation_fn", "relu") args.decoder_layerdrop = safe_getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = safe_getattr(args, "decoder_layers_to_keep", None) args.quant_noise_pq = safe_getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = safe_getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = safe_getattr(args, "quant_noise_scalar", 0) args.base_layers = safe_getattr(args, "base_layers", 0) args.base_sublayers = safe_getattr(args, "base_sublayers", 1) args.base_shuffle = safe_getattr(args, "base_shuffle", False) args.add_bos_token = safe_getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = safe_getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = safe_getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = safe_getattr(args, "character_embeddings", False) args.decoder_output_dim = safe_getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = safe_getattr( args, "decoder_input_dim", args.decoder_embed_dim ) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", False) args.adaptive_input = safe_getattr(args, "adaptive_input", False) args.adaptive_input_factor = safe_getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = safe_getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = safe_getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = safe_getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = safe_getattr(args, "no_scale_embedding", False) args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", False) args.checkpoint_activations = safe_getattr(args, "checkpoint_activations", False) args.offload_activations = safe_getattr(args, "offload_activations", False) args.scale_fc = safe_getattr(args, "scale_fc", False) args.scale_attn = safe_getattr(args, "scale_attn", False) args.scale_heads = safe_getattr(args, "scale_heads", False) args.scale_resids = safe_getattr(args, "scale_resids", False) if args.offload_activations: args.checkpoint_activations = True @register_model_architecture("transformer_lm", "transformer_lm_big") def transformer_lm_big(args): args.decoder_layers = safe_getattr(args, "decoder_layers", 12) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16) base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_wiki103") @register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103") def transformer_lm_baevski_wiki103(args): args.decoder_layers = safe_getattr(args, "decoder_layers", 16) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 8) args.dropout = safe_getattr(args, "dropout", 0.3) args.adaptive_input = safe_getattr(args, "adaptive_input", True) args.tie_adaptive_weights = safe_getattr(args, "tie_adaptive_weights", True) args.adaptive_input_cutoff = safe_getattr( args, "adaptive_input_cutoff", "20000,60000" ) args.adaptive_softmax_cutoff = safe_getattr( args, "adaptive_softmax_cutoff", "20000,60000" ) args.adaptive_softmax_dropout = safe_getattr(args, "adaptive_softmax_dropout", 0.2) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_dropout = safe_getattr(args, "activation_dropout", 0.1) args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", True) args.tie_adaptive_proj = safe_getattr(args, "tie_adaptive_proj", True) transformer_lm_big(args) @register_model_architecture("transformer_lm", "transformer_lm_gbw") @register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw") def transformer_lm_baevski_gbw(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 512) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.no_decoder_final_norm = safe_getattr(args, "no_decoder_final_norm", True) transformer_lm_big(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt") def transformer_lm_gpt(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 3072) args.decoder_layers = safe_getattr(args, "decoder_layers", 12) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_small") def transformer_lm_gpt2_small(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_layers = safe_getattr(args, "decoder_layers", 24) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_tiny") def transformer_lm_gpt2_tiny(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 64) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 64) args.decoder_layers = safe_getattr(args, "decoder_layers", 2) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 1) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium") def transformer_lm_gpt2_medium(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1280) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 5120) args.decoder_layers = safe_getattr(args, "decoder_layers", 36) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 20) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_big") def transformer_lm_gpt2_big(args): args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1600) args.decoder_ffn_embed_dim = safe_getattr(args, "decoder_ffn_embed_dim", 6400) args.decoder_layers = safe_getattr(args, "decoder_layers", 48) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 25) args.dropout = safe_getattr(args, "dropout", 0.1) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_big_wide") def transformer_lm_gpt2_big_wide(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 2048) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 8192) args.decoder_layers = getattr(args, "decoder_layers", 24) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_bigger") def transformer_lm_gpt2_bigger(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 2048) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 8192) args.decoder_layers = getattr(args, "decoder_layers", 48) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) def base_gpt3_architecture(args): args.decoder_input_dim = args.decoder_embed_dim args.decoder_output_dim = args.decoder_embed_dim args.decoder_ffn_embed_dim = safe_getattr( args, "decoder_ffn_embed_dim", args.decoder_embed_dim * 4 ) # GPT-3 used learned positional embeddings, rather than sinusoidal args.decoder_learned_pos = safe_getattr(args, "decoder_learned_pos", True) args.dropout = safe_getattr(args, "dropout", 0.0) args.attention_dropout = safe_getattr(args, "attention_dropout", 0.0) args.activation_fn = safe_getattr(args, "activation_fn", "gelu") args.share_decoder_input_output_embed = True base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_small") def transformer_lm_gpt3_small(args): # 125M params args.decoder_layers = safe_getattr(args, "decoder_layers", 12) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 768) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 12) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_medium") def transformer_lm_gpt3_medium(args): # 350M params args.decoder_layers = safe_getattr(args, "decoder_layers", 24) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1024) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_large") def transformer_lm_gpt3_large(args): # 760M params args.decoder_layers = safe_getattr(args, "decoder_layers", 24) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 1536) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 16) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_xl") def transformer_lm_gpt3_xl(args): # 1.3B params args.decoder_layers = safe_getattr(args, "decoder_layers", 24) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2048) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_2_7") def transformer_lm_gpt3_2_7(args): # 2.7B params args.decoder_layers = safe_getattr(args, "decoder_layers", 32) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 2560) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_6_7") def transformer_lm_gpt3_6_7(args): # 6.7B params args.decoder_layers = safe_getattr(args, "decoder_layers", 32) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 4096) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 32) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_13") def transformer_lm_gpt3_13(args): # 13B params args.decoder_layers = safe_getattr(args, "decoder_layers", 40) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 5120) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 40) base_gpt3_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt3_175") def transformer_lm_gpt3_175(args): # 175B params args.decoder_layers = safe_getattr(args, "decoder_layers", 96) args.decoder_embed_dim = safe_getattr(args, "decoder_embed_dim", 12288) args.decoder_attention_heads = safe_getattr(args, "decoder_attention_heads", 96) base_gpt3_architecture(args)