Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torchvision import models | |
from scipy.optimize import root_scalar | |
from scipy.special import betainc | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def build_backbone(path, name='resnet50'): | |
""" Builds a pretrained ResNet-50 backbone. """ | |
model = getattr(models, name)(pretrained=False) | |
model.head = nn.Identity() | |
model.fc = nn.Identity() | |
checkpoint = torch.load(path, map_location=device) | |
state_dict = checkpoint | |
for ckpt_key in ['state_dict', 'model_state_dict', 'teacher']: | |
if ckpt_key in checkpoint: | |
state_dict = checkpoint[ckpt_key] | |
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} | |
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} | |
msg = model.load_state_dict(state_dict, strict=False) | |
return model | |
def get_linear_layer(weight, bias): | |
""" Creates a layer that performs feature whitening or centering """ | |
dim_out, dim_in = weight.shape | |
layer = nn.Linear(dim_in, dim_out) | |
layer.weight = nn.Parameter(weight) | |
layer.bias = nn.Parameter(bias) | |
return layer | |
def load_normalization_layer(path): | |
""" | |
Loads the normalization layer from a checkpoint and returns the layer. | |
""" | |
checkpoint = torch.load(path, map_location=device) | |
if 'whitening' in path or 'out' in path: | |
D = checkpoint['weight'].shape[1] | |
weight = torch.nn.Parameter(D*checkpoint['weight']) | |
bias = torch.nn.Parameter(D*checkpoint['bias']) | |
else: | |
weight = checkpoint['weight'] | |
bias = checkpoint['bias'] | |
return get_linear_layer(weight, bias).to(device, non_blocking=True) | |
class NormLayerWrapper(nn.Module): | |
""" | |
Wraps backbone model and normalization layer | |
""" | |
def __init__(self, backbone, head): | |
super(NormLayerWrapper, self).__init__() | |
backbone.eval(), head.eval() | |
self.backbone = backbone | |
self.head = head | |
def forward(self, x): | |
output = self.backbone(x) | |
return self.head(output) | |
def cosine_pvalue(c, d, k=1): | |
""" | |
Returns the probability that the absolute value of the projection | |
between random unit vectors is higher than c | |
Args: | |
c: cosine value | |
d: dimension of the features | |
k: number of dimensions of the projection | |
""" | |
assert k>0 | |
a = (d - k) / 2.0 | |
b = k / 2.0 | |
if c < 0: | |
return 1.0 | |
return betainc(a, b, 1 - c ** 2) | |
def pvalue_angle(dim, k=1, angle=None, proba=None): | |
def f(a): | |
return cosine_pvalue(np.cos(a), dim, k) - proba | |
a = root_scalar(f, x0=0.49*np.pi, bracket=[0, np.pi/2]) | |
# a = fsolve(f, x0=0.49*np.pi)[0] | |
return a.root |