File size: 12,802 Bytes
100803d
 
429935b
8336d6b
 
429935b
 
 
8336d6b
17b8d6c
100803d
37c7c40
 
 
 
858fd76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9594d5
 
 
858fd76
 
 
 
e9594d5
 
 
858fd76
 
e9594d5
 
 
 
 
 
 
 
858fd76
 
 
 
 
 
37c7c40
858fd76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9594d5
858fd76
e9594d5
 
 
 
858fd76
e9594d5
858fd76
e9594d5
858fd76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os

# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
# os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
os.system('pip install -q torch==1.10.0+cu111 torchvision==0.11+cu111 -f https://download.pytorch.org/whl/torch_stable.html')

# install detectron2 that matches pytorch 1.8
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
#os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

import gradio as gr
import re
import string

from operator import itemgetter
import collections

import pypdf
from pypdf import PdfReader
from pypdf.errors import PdfReadError

import pdf2image
from pdf2image import convert_from_path
import langdetect
from langdetect import detect_langs

import pandas as pd
import numpy as np
import random
import tempfile
import itertools

from matplotlib import font_manager
from PIL import Image, ImageDraw, ImageFont
import cv2

## files

import sys  
sys.path.insert(0, 'files/')

import functions
from functions import *

# update pip
os.system('python -m pip install --upgrade pip')

## model / feature extractor / tokenizer

from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast, 

import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# model
# tokenizer = LayoutXLMTokenizerFast.from_pretrained(model_id)
model = LayoutLMv2ForTokenClassification.from_pretrained(model_id);
model.to(device);

# feature extractor
from transformers import LayoutLMv2FeatureExtractor
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)

# tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

# APP outputs 
def app_outputs(uploaded_pdf):
    filename, msg, images = pdf_to_images(uploaded_pdf)
    num_images = len(images)

    if not msg.startswith("Error with the PDF"):

        # Extraction of image data (text and bounding boxes)
        dataset, lines, row_indexes, par_boxes, line_boxes = extraction_data_from_image(images)
        # prepare our data in the format of the model
        encoded_dataset = dataset.map(prepare_inference_features, batched=True, batch_size=64, remove_columns=dataset.column_names)
        custom_encoded_dataset = CustomDataset(encoded_dataset, tokenizer)
        # Get predictions (token level)
        outputs, images_ids_list, chunk_ids, input_ids, bboxes = predictions_token_level(images, custom_encoded_dataset)
        # Get predictions (line level)
        probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes)
        # Get labeled images with lines bounding boxes
        images = get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict)

        img_files = list()
        # get image of PDF without bounding boxes
        for i in range(num_images):
            if filename != "files/blank.png": img_file = f"img_{i}_" + filename.replace(".pdf", ".png")
            else: img_file = filename.replace(".pdf", ".png")
            images[i].save(img_file)
            img_files.append(img_file)

        if num_images < max_imgboxes:
            img_files += [image_blank]*(max_imgboxes - num_images)
            images += [Image.open(image_blank)]*(max_imgboxes - num_images)
            for count in range(max_imgboxes - num_images):
                df[num_images + count] = pd.DataFrame()
        else:
            img_files = img_files[:max_imgboxes]
            images = images[:max_imgboxes]
            df = dict(itertools.islice(df.items(), max_imgboxes))

        # save 
        csv_files = list()
        for i in range(max_imgboxes):
            csv_file = f"csv_{i}_" + filename.replace(".pdf", ".csv")
            csv_files.append(gr.File.update(value=csv_file, visible=True))
            df[i].to_csv(csv_file, encoding="utf-8", index=False)

    else:  
        img_files, images, csv_files = [""]*max_imgboxes, [""]*max_imgboxes, [""]*max_imgboxes
        img_files[0], img_files[1] = image_blank, image_blank
        images[0], images[1] = Image.open(image_blank), Image.open(image_blank)
        csv_file = "csv_wo_content.csv"
        csv_files[0], csv_files[1] = gr.File.update(value=csv_file, visible=True), gr.File.update(value=csv_file, visible=True)
        df, df_empty = dict(), pd.DataFrame()
        df[0], df[1] = df_empty.to_csv(csv_file, encoding="utf-8", index=False), df_empty.to_csv(csv_file, encoding="utf-8", index=False)
    
    return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1]

# gradio APP
with gr.Blocks(title="Inference APP for Document Understanding at line level (v2 - LayoutXLM base)", css=".gradio-container") as demo:
    gr.HTML("""
    <div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>Inference APP for Document Understanding at line level (v2 - LayoutXLM base)</h1></div>
    <div style="margin-top: 40px"><p>(03/05/2023) This Inference APP uses the <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" target="_blank">model Layout XLM base combined with XLM-RoBERTa base and finetuned on the dataset DocLayNet base at line level</a> (chunk size of 384 tokens).</p></div>
    <div><p><a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://arxiv.org/abs/2104.08836" target="_blank">LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding</a> is a Document Understanding model that uses both layout and text in order to detect labels of bounding boxes. Combined with the model <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/xlm-roberta-base" target="_blank">XML-RoBERTa base</a>, this finetuned model has the capacity to <b>understand any language</b>. Finetuned on the dataset <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a>, it can <b>classifly any bounding box (and its OCR text) to 11 labels</b> (Caption, Footnote, Formula, List-item, Page-footer, Page-header, Picture, Section-header, Table, Text, Title).</p></div>
    <div><p>It relies on an external OCR engine to get words and bounding boxes from the document image. Thus, let's run in this APP an OCR engine (<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/madmaze/pytesseract#python-tesseract" target="_blank">PyTesseract</a>) to get the bounding boxes, then run Layout XLM base (already fine-tuned on the dataset DocLayNet base at line level) on the individual tokens and then, visualize the result at line level!</p></div>
    <div><p><b>It allows to get all pages of any PDF (of any language) with bounding boxes labeled at line level and the associated dataframes with labeled data (bounding boxes, texts, labels) :-)</b></p></div>
    <div><p>However, the inference time per page can be high when running the model on CPU due to the number of line predictions to be made. Therefore, to avoid running this APP for too long, <b>only the first 2 pages are processed by this APP</b>. If you want to increase this limit, you can either clone this APP in Hugging Face Space (or run its <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb" target="_blank">notebook</a> on your own plateform) and change the value of the parameter <code>max_imgboxes</code>, or run the inference notebook "<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb" target="_blank">Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)</a>" on your own platform as it does not have this limit.</p></div>
    <div style="margin-top: 20px"><p>More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts:</p>
    <ul><li>(03/05/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="" target="_blank">Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base</a></li><li>(02/14/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893" target="_blank">Document AI | Inference APP for Document Understanding at line level</a></li><li>(02/10/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8" target="_blank">Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset</a></li><li>(01/31/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956" target="_blank">Document AI | DocLayNet image viewer APP</a></li><li>(01/27/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></li></ul></div> 
    """)
    with gr.Row():
        pdf_file = gr.File(label="PDF")
    with gr.Row():
        submit_btn = gr.Button(f"Display first {max_imgboxes} labeled PDF pages")
        reset_btn = gr.Button(value="Clear")
    with gr.Row():
        output_msg = gr.Textbox(label="Output message")
    with gr.Row():
        fileboxes = []
        for num_page in range(max_imgboxes):
            file_path = gr.File(visible=True, label=f"Image file of the PDF page n°{num_page}")
            fileboxes.append(file_path)
    with gr.Row():
        imgboxes = []
        for num_page in range(max_imgboxes):
            img = gr.Image(type="pil", label=f"Image of the PDF page n°{num_page}")
            imgboxes.append(img)
    with gr.Row():
        csvboxes = []
        for num_page in range(max_imgboxes):
            csv = gr.File(visible=True, label=f"CSV file at line level (page {num_page})")
            csvboxes.append(csv)
    with gr.Row():
        dfboxes = []
        for num_page in range(max_imgboxes):
            df = gr.Dataframe(
                      headers=["bounding boxes", "texts", "labels"],
                      datatype=["str", "str", "str"],
                      col_count=(3, "fixed"), 
                      visible=True,
                      label=f"Data of page {num_page}",
                      type="pandas",
                      wrap=True
                    )
            dfboxes.append(df)

    outputboxes = [output_msg] + fileboxes + imgboxes + csvboxes + dfboxes
    submit_btn.click(app_outputs, inputs=[pdf_file], outputs=outputboxes)
    reset_btn.click(
        lambda: [pdf_file.update(value=None), output_msg.update(value=None)] + [filebox.update(value=None) for filebox in fileboxes] + [imgbox.update(value=None) for imgbox in imgboxes] + [csvbox.update(value=None) for csvbox in csvboxes] + [dfbox.update(value=None) for dfbox in dfboxes],
        inputs=[],
        outputs=[pdf_file, output_msg] + fileboxes + imgboxes + csvboxes + dfboxes,
    )
    
    gr.Examples(
        [["files/example.pdf"]],
        [pdf_file],
        outputboxes,
        fn=app_outputs,
        cache_examples=True,
        )
    
demo.launch()