import os # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) # os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') os.system('pip install -q torch==1.10.0+cu111 torchvision==0.11+cu111 -f https://download.pytorch.org/whl/torch_stable.html') # install detectron2 that matches pytorch 1.8 # See https://detectron2.readthedocs.io/tutorials/install.html for instructions #os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') os.system('pip install git+https://github.com/facebookresearch/detectron2.git') import detectron2 from detectron2.utils.logger import setup_logger setup_logger() import gradio as gr import re import string from operator import itemgetter import collections import pypdf from pypdf import PdfReader from pypdf.errors import PdfReadError import pdf2image from pdf2image import convert_from_path import langdetect from langdetect import detect_langs import pandas as pd import numpy as np import random import tempfile import itertools from matplotlib import font_manager from PIL import Image, ImageDraw, ImageFont import cv2 ## files import sys sys.path.insert(0, 'files/') import functions from functions import * # update pip os.system('python -m pip install --upgrade pip') ## model / feature extractor / tokenizer import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model from transformers import LayoutLMv2ForTokenClassification model_id = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512" model = LayoutLMv2ForTokenClassification.from_pretrained(model_id); model.to(device); # feature extractor from transformers import LayoutLMv2FeatureExtractor feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) # tokenizer from transformers import AutoTokenizer tokenizer_id = "xlm-roberta-base" tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # get labels id2label = model.config.id2label label2id = model.config.label2id num_labels = len(id2label) # APP outputs def app_outputs(uploaded_pdf): filename, msg, images = pdf_to_images(uploaded_pdf) num_images = len(images) if not msg.startswith("Error with the PDF"): # Extraction of image data (text and bounding boxes) dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes = extraction_data_from_image(images) # prepare our data in the format of the model encoded_dataset = dataset.map(prepare_inference_features_paragraph, batched=True, batch_size=64, remove_columns=dataset.column_names) custom_encoded_dataset = CustomDataset(encoded_dataset, tokenizer) # Get predictions (token level) outputs, images_ids_list, chunk_ids, input_ids, bboxes = predictions_token_level(images, custom_encoded_dataset) # Get predictions (paragraph level) probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes) # Get labeled images with lines bounding boxes images = get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict) img_files = list() # get image of PDF without bounding boxes for i in range(num_images): if filename != "files/blank.png": img_file = f"img_{i}_" + filename.replace(".pdf", ".png") else: img_file = filename.replace(".pdf", ".png") img_file = img_file.replace("/", "_") images[i].save(img_file) img_files.append(img_file) if num_images < max_imgboxes: img_files += [image_blank]*(max_imgboxes - num_images) images += [Image.open(image_blank)]*(max_imgboxes - num_images) for count in range(max_imgboxes - num_images): df[num_images + count] = pd.DataFrame() else: img_files = img_files[:max_imgboxes] images = images[:max_imgboxes] df = dict(itertools.islice(df.items(), max_imgboxes)) # save csv_files = list() for i in range(max_imgboxes): csv_file = f"csv_{i}_" + filename.replace(".pdf", ".csv") csv_file = csv_file.replace("/", "_") csv_files.append(gr.File.update(value=csv_file, visible=True)) df[i].to_csv(csv_file, encoding="utf-8", index=False) else: img_files, images, csv_files = [""]*max_imgboxes, [""]*max_imgboxes, [""]*max_imgboxes img_files[0], img_files[1] = image_blank, image_blank images[0], images[1] = Image.open(image_blank), Image.open(image_blank) csv_file = "csv_wo_content.csv" csv_files[0], csv_files[1] = gr.File.update(value=csv_file, visible=True), gr.File.update(value=csv_file, visible=True) df, df_empty = dict(), pd.DataFrame() df[0], df[1] = df_empty.to_csv(csv_file, encoding="utf-8", index=False), df_empty.to_csv(csv_file, encoding="utf-8", index=False) return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1] # Gradio APP with gr.Blocks(title="Inference APP for Document Understanding at paragraph level (v2 - LayoutXLM base)", css=".gradio-container") as demo: gr.HTML("""
(03/31/2023) This Inference APP uses the model Layout XLM base combined with XLM-RoBERTa base and finetuned on the dataset DocLayNet base at paragraph level (chunk size of 512 tokens).
LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding is a Document Understanding model that uses both layout and text in order to detect labels of bounding boxes. Combined with the model XML-RoBERTa base, this finetuned model has the capacity to understand any language. Finetuned on the dataset DocLayNet base, it can classifly any bounding box (and its OCR text) to 11 labels (Caption, Footnote, Formula, List-item, Page-footer, Page-header, Picture, Section-header, Table, Text, Title).
It relies on an external OCR engine to get words and bounding boxes from the document image. Thus, let's run in this APP an OCR engine (PyTesseract) to get the bounding boxes, then run Layout XLM base (already fine-tuned on the dataset DocLayNet base at paragraph level) on the individual tokens and then, visualize the result at paragraph level!
It allows to get all pages of any PDF (of any language) with bounding boxes labeled at paragraph level and the associated dataframes with labeled data (bounding boxes, texts, labels) :-)
However, the inference time per page can be high when running the model on CPU due to the number of paragraph predictions to be made. Therefore, to avoid running this APP for too long, only the first 2 pages are processed by this APP. If you want to increase this limit, you can either clone this APP in Hugging Face Space (or run its notebook on your own plateform) and change the value of the parameter max_imgboxes
, or run the inference notebook "Document AI | Inference at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)" on your own platform as it does not have this limit.
More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts: