pierreguillou
commited on
Commit
•
048e1ca
1
Parent(s):
b129e61
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from faster_whisper import WhisperModel
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
model_size = "large-v2"
|
7 |
+
|
8 |
+
# get device
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
if device == "cuda:0":
|
12 |
+
# Run on GPU with FP16
|
13 |
+
model_whisper = WhisperModel(model_size, device="cuda", compute_type="float16")
|
14 |
+
# or Run on GPU with INT8
|
15 |
+
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
16 |
+
else:
|
17 |
+
# Run on CPU with INT8
|
18 |
+
model_whisper = WhisperModel(model_size, device="cpu", compute_type="int8")
|
19 |
+
|
20 |
+
def get_filename(file_obj):
|
21 |
+
return file_obj.name.split("/")[-1]
|
22 |
+
|
23 |
+
def audio_to_transcript(file_obj):
|
24 |
+
# get all audio segments
|
25 |
+
segments, _ = model_whisper.transcribe(file_obj.name, beam_size=5, vad_filter=True)
|
26 |
+
print("start")
|
27 |
+
start_segments, end_segments, text_segments = list(), list(), list()
|
28 |
+
for segment in segments:
|
29 |
+
start, end, text = segment.start, segment.end, segment.text
|
30 |
+
start_segments.append(start)
|
31 |
+
end_segments.append(end)
|
32 |
+
text_segments.append(text)
|
33 |
+
|
34 |
+
# save transcript into csv
|
35 |
+
df = pd.DataFrame()
|
36 |
+
df["start"] = start_segments
|
37 |
+
df["end"] = end_segments
|
38 |
+
df["text"] = text_segments
|
39 |
+
|
40 |
+
print(df)
|
41 |
+
|
42 |
+
return get_filename(file_obj), df
|
43 |
+
|
44 |
+
## Gradio interface
|
45 |
+
headers = ["start", "end", "text"]
|
46 |
+
iface = gr.Interface(fn=audio_to_transcript,
|
47 |
+
inputs=gr.File(label="Audio file"),
|
48 |
+
outputs=[
|
49 |
+
gr.Textbox(label="Name of the audio file"),
|
50 |
+
gr.DataFrame(label="Transcript", headers=headers),
|
51 |
+
],
|
52 |
+
allow_flagging="never",
|
53 |
+
title="Audio to Transcript",
|
54 |
+
description="Just paste any audio file and get its corresponding transcript with timeline.",
|
55 |
+
)
|
56 |
+
iface.launch()
|