Spaces:
Build error
Build error
import base64 | |
import altair as alt | |
import pandas as pd | |
import streamlit as st | |
from PIL import Image | |
from stqdm import stqdm | |
from .configs import SupportedFiles | |
stqdm.pandas() | |
def get_logo(path): | |
return Image.open(path) | |
# @st.cache(suppress_st_warning=True) | |
def read_file(uploaded_file) -> pd.DataFrame: | |
file_type = uploaded_file.name.split(".")[-1] | |
if file_type in set(i.name for i in SupportedFiles): | |
read_f = SupportedFiles[file_type].value[0] | |
df = read_f(uploaded_file) | |
# remove any NA | |
df = df.dropna() | |
return df | |
else: | |
st.error("File type not supported") | |
def download_button(dataframe: pd.DataFrame, name: str): | |
csv = dataframe.to_csv(index=False) | |
# some strings <-> bytes conversions necessary here | |
b64 = base64.b64encode(csv.encode()).decode() | |
href = f'<a href="data:file/csv;base64,{b64}" download="{name}.csv">Download</a>' | |
st.write(href, unsafe_allow_html=True) | |
def plot_labels_prop(data: pd.DataFrame, label_column: str): | |
unique_value_limit = 100 | |
if data[label_column].nunique() > unique_value_limit: | |
st.warning( | |
f""" | |
The column you selected has more than {unique_value_limit}. | |
Are you sure it's the right column? If it is, please note that | |
this will impact __Wordify__ performance. | |
""" | |
) | |
return | |
source = ( | |
data[label_column] | |
.value_counts() | |
.reset_index() | |
.rename(columns={"index": "Labels", label_column: "Counts"}) | |
) | |
source["Props"] = source["Counts"] / source["Counts"].sum() | |
source["Proportions"] = (source["Props"].round(3) * 100).map("{:,.2f}".format) + "%" | |
bars = ( | |
alt.Chart(source) | |
.mark_bar() | |
.encode( | |
x=alt.X("Labels:O", sort="-y"), | |
y="Counts:Q", | |
) | |
) | |
text = bars.mark_text(align="center", baseline="middle", dy=15).encode( | |
text="Proportions:O" | |
) | |
return (bars + text).properties(height=300) | |
def plot_nchars(data: pd.DataFrame, text_column: str): | |
source = data[text_column].str.len().to_frame() | |
plot = ( | |
alt.Chart(source) | |
.mark_bar() | |
.encode( | |
alt.X( | |
f"{text_column}:Q", bin=True, axis=alt.Axis(title="# chars per text") | |
), | |
alt.Y("count()", axis=alt.Axis(title="")), | |
) | |
) | |
return plot.properties(height=300) | |
def plot_score(data: pd.DataFrame, label_col: str, label: str): | |
source = ( | |
data.loc[data[label_col] == label] | |
.sort_values("score", ascending=False) | |
.head(100) | |
) | |
plot = ( | |
alt.Chart(source) | |
.mark_bar() | |
.encode( | |
y=alt.Y("word:O", sort="-x"), | |
x="score:Q", | |
) | |
) | |
return plot.properties(height=max(30 * source.shape[0], 50)) | |