Spaces:
Running
Running
File size: 5,077 Bytes
8598b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fish Speech"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### For Windows User / win用户"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "bat"
}
},
"outputs": [],
"source": [
"!chcp 65001"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### For Linux User / Linux 用户"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import locale\n",
"locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prepare Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# For Chinese users, you probably want to use mirror to accelerate downloading\n",
"# !set HF_ENDPOINT=https://hf-mirror.com\n",
"# !export HF_ENDPOINT=https://hf-mirror.com \n",
"\n",
"!huggingface-cli download fishaudio/fish-speech-1.4 --local-dir checkpoints/fish-speech-1.4/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## WebUI Inference\n",
"\n",
"> You can use --compile to fuse CUDA kernels for faster inference (10x)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"!python tools/webui.py \\\n",
" --llama-checkpoint-path checkpoints/fish-speech-1.4 \\\n",
" --decoder-checkpoint-path checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth \\\n",
" # --compile"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Break-down CLI Inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Encode reference audio: / 从语音生成 prompt: \n",
"\n",
"You should get a `fake.npy` file.\n",
"\n",
"你应该能得到一个 `fake.npy` 文件."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"## Enter the path to the audio file here\n",
"src_audio = r\"D:\\PythonProject\\vo_hutao_draw_appear.wav\"\n",
"\n",
"!python tools/vqgan/inference.py \\\n",
" -i {src_audio} \\\n",
" --checkpoint-path \"checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth\"\n",
"\n",
"from IPython.display import Audio, display\n",
"audio = Audio(filename=\"fake.wav\")\n",
"display(audio)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Generate semantic tokens from text: / 从文本生成语义 token:\n",
"\n",
"> This command will create a codes_N file in the working directory, where N is an integer starting from 0.\n",
"\n",
"> You may want to use `--compile` to fuse CUDA kernels for faster inference (~30 tokens/second -> ~300 tokens/second).\n",
"\n",
"> 该命令会在工作目录下创建 codes_N 文件, 其中 N 是从 0 开始的整数.\n",
"\n",
"> 您可以使用 `--compile` 来融合 cuda 内核以实现更快的推理 (~30 tokens/秒 -> ~300 tokens/秒)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"!python tools/llama/generate.py \\\n",
" --text \"hello world\" \\\n",
" --prompt-text \"The text corresponding to reference audio\" \\\n",
" --prompt-tokens \"fake.npy\" \\\n",
" --checkpoint-path \"checkpoints/fish-speech-1.4\" \\\n",
" --num-samples 2\n",
" # --compile"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Generate speech from semantic tokens: / 从语义 token 生成人声:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"vscode": {
"languageId": "shellscript"
}
},
"outputs": [],
"source": [
"!python tools/vqgan/inference.py \\\n",
" -i \"codes_0.npy\" \\\n",
" --checkpoint-path \"checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth\"\n",
"\n",
"from IPython.display import Audio, display\n",
"audio = Audio(filename=\"fake.wav\")\n",
"display(audio)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|