Veronica / app.py
piyush2102020's picture
Update app.py
082386a verified
import os
import subprocess
repo_url = "https://huggingface.co/piyush2102020/veronica_model"
if not os.path.exists("veronica_model"):
subprocess.run(["git", "clone", repo_url])
import sys
sys.path.append("veronica_model") # Add the repo to the Python path
import gradio as gr
from transformers import GPT2Tokenizer
from veronica import Veronica, VeronicaConfig
import firebase_admin
import json
from firebase_admin import credentials, db
import torch
import time
from veronica import Veronica # Import Veronica class
# Load tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = Veronica(VeronicaConfig())
weights=torch.load("veronica_model/veronica_super_trained.pth",map_location='cpu')
model.load_state_dict(weights)
model.eval()
firebase_key_path = os.getenv("firebase_db_url")
creds=os.getenv("firebase_credentials")
cred = json.loads(creds)
cred = credentials.Certificate(cred)
firebase_app = firebase_admin.initialize_app(cred, {
'databaseURL': firebase_key_path
})
ref = db.reference('/rlhf')
# Define the build function
def build(question):
user_token = "###user ###"
bot_token = "###bot ###"
return f"{user_token}{question}{bot_token}".lower()
# Chat function
def veronica_chat(history=None, question=None,max_new_tokens=10):
global generated_answer1, generated_answer2
if history is None:
history = []
if len(history) == 0:
history.append({"role": "assistant", "content": "Hey, I am Veronica. How can I assist you today?"})
else:
history.append({"role": "user", "content": question})
processing_message = "<i>Processing your question...</i>"
history.append({"role": "assistant", "content": processing_message})
# Generate responses
prompt = build(question)
responses, _ = model.generate(prompt, num_samples=2, max_new_tokens=max_new_tokens)
answers = []
for r in responses:
for item in [prompt, "###user ###", "###bot ###", "###", "###end", "end"]:
r = r.replace(item, "")
answers.append(r)
generated_answer1, generated_answer2 = answers
# Update history with generated responses
history[-1] = {
"role": "assistant",
"content": f"<div style='display: flex; justify-content: space-between; width: 100%;'>"
f"<div style='flex: 1; padding: 10px; background-color: #f9f9f9;'>"
f"<b>Response 1:</b><br>{generated_answer1}<br></div>"
f"<div style='width: 4px; background-color: black;'></div>"
f"<div style='flex: 1; padding: 10px; background-color: #f9f9f9;'>"
f"<b>Response 2:</b><br>{generated_answer2}<br></div></div>"
}
return history
# Clear textboxes
def clear_textboxes(*args):
return "", ""
# Feedback function
def feedback(prompt="", flagged_answer="", decision="", human_response="", history=None):
global generated_answer1, generated_answer2
selected_answer = generated_answer1 if flagged_answer == "Response 1" else generated_answer2
# Prepare Firebase payload
payload = {
"prompt": prompt,
"selected_answer_content": selected_answer,
"decision": decision,
"human_response": human_response,
"time_stamp": time.time()
}
print(payload)
ref.push(payload)
# Update chat history with acknowledgment
if history is None:
history = []
history.append({"role": "assistant", "content": "Thanks for your feedback! How can I assist you further?"})
return history
# Gradio Interface
with gr.Blocks(theme=gr.themes.Monochrome()) as interface:
interface.css = """
.gradio-container { margin: 0; padding: 0; }
.gradio-row, .gradio-column { margin: 0; padding: 0; }
.gradio-chatbot .message { font-size: 12px !important; }
.gradio-textbox textarea { font-size: 12px !important; }
"""
gr.Markdown("# Veronica AI")
gr.Markdown("""
**Chat with Veronica**, an AI model that is currently in the **fine-tuning stage**. During this stage, Veronica is learning from user interactions and adapting to provide better, more context-aware answers.
""")
with gr.Row():
with gr.Column():
gr.Markdown("## RLHF Instructions")
gr.Markdown("""
- Ask a question to see two responses.
- Select your preferred response and provide feedback if needed.
""")
with gr.Row():
slider=gr.Slider(minimum=10,maximum=500,label="Token Length")
drop_down = gr.Dropdown(
choices=VeronicaConfig().functions_list,
label="Select Function",
value=VeronicaConfig().functions_list[3]
)
answer_flag = gr.Dropdown(choices=["Response 1", "Response 2"], label="Flag Response", value="Response 1")
answer_input_human = gr.Textbox(placeholder="Write your answer here...", label="Human Answer")
submit_feedback = gr.Button("Submit Feedback")
with gr.Column(scale=8):
chatbot = gr.Chatbot(
label="Chat",
height=420,
type="messages",
value=[{"role": "assistant", "content": "Hey, I am Veronica. How can I assist you today?"}]
)
with gr.Row():
with gr.Column(scale=6):
question_input = gr.Textbox(placeholder="Chat with Veronica...", label="")
with gr.Column():
send_button = gr.Button("Send")
# Link components to functions
send_button.click(fn=veronica_chat, inputs=[chatbot, question_input,slider], outputs=[chatbot])
submit_feedback.click(fn=feedback, inputs=[question_input, answer_flag, drop_down, answer_input_human, chatbot], outputs=[chatbot])
submit_feedback.click(fn=clear_textboxes, inputs=[question_input, answer_input_human], outputs=[question_input, answer_input_human])
# Launch interface
interface.launch(share=False)