import os import subprocess repo_url = "https://huggingface.co/piyush2102020/veronica_model" if not os.path.exists("veronica_model"): subprocess.run(["git", "clone", repo_url]) import sys sys.path.append("veronica_model") # Add the repo to the Python path import gradio as gr from transformers import GPT2Tokenizer from veronica import Veronica, VeronicaConfig import firebase_admin import json from firebase_admin import credentials, db import torch import time from veronica import Veronica # Import Veronica class # Load tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = Veronica(VeronicaConfig()) weights=torch.load("veronica_model/veronica_super_trained.pth",map_location='cpu') model.load_state_dict(weights) model.eval() firebase_key_path = os.getenv("firebase_db_url") cred = json.loads(os.getenv("firebase_credentials")) cred = credentials.Certificate(cred) firebase_app = firebase_admin.initialize_app(cred, { 'databaseURL': firebase_key_path }) ref = db.reference('/rlhf') # Define the build function def build(question): user_token = "###user ###" bot_token = "###bot ###" return f"{user_token}{question}{bot_token}".lower() # Chat function def veronica_chat(history=None, question=None,max_new_tokens=10): global generated_answer1, generated_answer2 if history is None: history = [] if len(history) == 0: history.append({"role": "assistant", "content": "Hey, I am Veronica. How can I assist you today?"}) else: history.append({"role": "user", "content": question}) processing_message = "Processing your question..." history.append({"role": "assistant", "content": processing_message}) # Generate responses prompt = build(question) responses, _ = model.generate(prompt, num_samples=2, max_new_tokens=max_new_tokens) answers = [] for r in responses: for item in [prompt, "###user ###", "###bot ###", "###", "###end", "end"]: r = r.replace(item, "") answers.append(r) generated_answer1, generated_answer2 = answers # Update history with generated responses history[-1] = { "role": "assistant", "content": f"
" f"
" f"Response 1:
{generated_answer1}
" f"
" f"
" f"Response 2:
{generated_answer2}
" } return history # Clear textboxes def clear_textboxes(*args): return "", "" # Feedback function def feedback(prompt="", flagged_answer="", decision="", human_response="", history=None): global generated_answer1, generated_answer2 selected_answer = generated_answer1 if flagged_answer == "Response 1" else generated_answer2 # Prepare Firebase payload payload = { "prompt": prompt, "selected_answer_content": selected_answer, "decision": decision, "human_response": human_response, "time_stamp": time.time() } print(payload) ref.push(payload) # Update chat history with acknowledgment if history is None: history = [] history.append({"role": "assistant", "content": "Thanks for your feedback! How can I assist you further?"}) return history # Gradio Interface with gr.Blocks(theme=gr.themes.Monochrome()) as interface: interface.css = """ .gradio-container { margin: 0; padding: 0; } .gradio-row, .gradio-column { margin: 0; padding: 0; } .gradio-chatbot .message { font-size: 12px !important; } .gradio-textbox textarea { font-size: 12px !important; } """ gr.Markdown("# Veronica AI") gr.Markdown(""" **Chat with Veronica**, an AI model that is currently in the **fine-tuning stage**. During this stage, Veronica is learning from user interactions and adapting to provide better, more context-aware answers. """) with gr.Row(): with gr.Column(): gr.Markdown("## RLHF Instructions") gr.Markdown(""" - Ask a question to see two responses. - Select your preferred response and provide feedback if needed. """) with gr.Row(): slider=gr.Slider(minimum=10,maximum=500,label="Token Length") drop_down = gr.Dropdown( choices=VeronicaConfig().functions_list, label="Select Function", value=VeronicaConfig().functions_list[3] ) answer_flag = gr.Dropdown(choices=["Response 1", "Response 2"], label="Flag Response", value="Response 1") answer_input_human = gr.Textbox(placeholder="Write your answer here...", label="Human Answer") submit_feedback = gr.Button("Submit Feedback") with gr.Column(scale=8): chatbot = gr.Chatbot( label="Chat", height=420, type="messages", value=[{"role": "assistant", "content": "Hey, I am Veronica. How can I assist you today?"}] ) with gr.Row(): with gr.Column(scale=6): question_input = gr.Textbox(placeholder="Chat with Veronica...", label="") with gr.Column(): send_button = gr.Button("Send") # Link components to functions send_button.click(fn=veronica_chat, inputs=[chatbot, question_input,slider], outputs=[chatbot]) submit_feedback.click(fn=feedback, inputs=[question_input, answer_flag, drop_down, answer_input_human, chatbot], outputs=[chatbot]) submit_feedback.click(fn=clear_textboxes, inputs=[question_input, answer_input_human], outputs=[question_input, answer_input_human]) # Launch interface interface.launch(share=True)