Spaces:
Runtime error
Runtime error
from base64 import b64encode | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
# For video display: | |
from matplotlib import pyplot as plt | |
from pathlib import Path | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import os | |
torch.manual_seed(1) | |
# Supress some unnecessary warnings when loading the CLIPTextModel | |
logging.set_verbosity_error() | |
# Set device | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" | |
import gc | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
# The UNet model for generating the latents. | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
# The noise scheduler | |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", | |
num_train_timesteps=1000) | |
# To the GPU we go! | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device) | |
def load_learned_embeds(): | |
pathlist = Path('learned_embeds/').glob('*_learned_embeds.bin') | |
learned_embeds = [] | |
for path in pathlist: | |
path_in_str = str(path) | |
# print(path_in_str) | |
learned_embeds.append(torch.load(path_in_str)) | |
concept_embeds_list = [] | |
for obj in learned_embeds: | |
for k, v in obj.items(): | |
if v.shape[0] == 768: | |
print(k, v.shape) | |
concept_embeds_list.append(v) | |
return torch.stack(concept_embeds_list) | |
def pil_to_latent(input_im): | |
# Single image -> single latent in a batch (so size 1, 4, 64, 64) | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) # Note scaling | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
# Prep Scheduler | |
def set_timesteps(scheduler, num_inference_steps): | |
scheduler.set_timesteps(num_inference_steps) | |
scheduler.timesteps = scheduler.timesteps.to( | |
torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 | |
def get_output_embeds(input_embeddings): | |
# CLIP's text model uses causal mask, so we prepare it here: | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, | |
dtype=input_embeddings.dtype) | |
# Getting the output embeddings involves calling the model with passing output_hidden_states=True | |
# so that it doesn't just return the pooled final predictions: | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, # We aren't using an attention mask so that can be None | |
causal_attention_mask=causal_attention_mask.to(torch_device), | |
output_attentions=None, | |
output_hidden_states=True, # We want the output embs not the final output | |
return_dict=None, | |
) | |
# We're interested in the output hidden state only | |
output = encoder_outputs[0] | |
# There is a final layer norm we need to pass these through | |
output = text_encoder.text_model.final_layer_norm(output) | |
# And now they're ready! | |
return output | |
def blue_loss(images): | |
# How far the pixels are from +80% contrast: | |
contrast = 230 # it ranges from -255 to +255 | |
contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast)) | |
cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 ) | |
cimgs = torch.where(cimgs > 1.0, 1.0, cimgs) | |
cimgs = torch.where(cimgs < 0.0, 0.0, cimgs) | |
error = torch.abs( images - cimgs ).mean() | |
#error = torch.abs(images[:] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel | |
print('error: ', error) | |
return error | |
# Generating an image with these modified embeddings | |
def generate_with_embs(text_input, text_embeddings, output=None, generator=None, additional_guidance=False): | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = 30 # Number of denoising steps | |
guidance_scale = 7.5 # Scale for classifier-free guidance | |
if generator is None: | |
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
set_timesteps(scheduler, num_inference_steps) | |
# Prep latents | |
latents = torch.randn( | |
(batch_size, unet.in_channels, height // 8, width // 8), | |
generator=generator, | |
) | |
latents = latents.to(torch_device) | |
latents = latents * scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
#### ADDITIONAL GUIDANCE ### | |
if additional_guidance: | |
blue_loss_scale = 80 | |
if i % 5 == 0: | |
# Requires grad on the latents | |
latents = latents.detach().requires_grad_() | |
# Get the predicted x0: | |
latents_x0 = latents - sigma * noise_pred | |
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample | |
# Decode to image space | |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) | |
# Calculate loss | |
loss = blue_loss(denoised_images) * blue_loss_scale | |
# Occasionally print it out | |
if i % 10 == 0: | |
print(i, 'loss:', loss.item()) | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss, latents)[0] | |
# Modify the latents based on this gradient | |
latents = latents.detach() - cond_grad * sigma ** 2 | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
if output: | |
output = latents_to_pil(latents)[0] | |
return latents_to_pil(latents)[0] | |
concept_embeds = load_learned_embeds() | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
#token_emb_layer # Vocab size 49408, emb_dim 768 | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
#pos_emb_layer |