Spaces:
Runtime error
Runtime error
piyushgrover
commited on
Commit
β’
477daa4
1
Parent(s):
17ab401
added code files
Browse files
README.md
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Stable Diffusion Image Generation
|
3 |
-
emoji: π
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: purple
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.49.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
-
|
13 |
-
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
+
title: YoloV3
|
4 |
+
sdk: gradio
|
5 |
+
colorFrom: yellow
|
6 |
+
colorTo: green
|
7 |
+
pinned: true
|
8 |
---
|
9 |
+
# yolov3
|
10 |
+
S13 ERA V1
|
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils import *
|
3 |
+
import random
|
4 |
+
|
5 |
+
|
6 |
+
is_clicked = False
|
7 |
+
out_img_list = [None, None, None, None, None]
|
8 |
+
out_state_list = [False, False, False, False, False]
|
9 |
+
|
10 |
+
def fn_query_on_load():
|
11 |
+
return "Cats at sunset"
|
12 |
+
|
13 |
+
def fn_refresh():
|
14 |
+
|
15 |
+
return out_img_list
|
16 |
+
|
17 |
+
|
18 |
+
with gr.Blocks() as app:
|
19 |
+
with gr.Row():
|
20 |
+
gr.Markdown(
|
21 |
+
"""
|
22 |
+
# Stable Diffusion Image Generation
|
23 |
+
### Enter query to generate images in various styles
|
24 |
+
""")
|
25 |
+
|
26 |
+
with gr.Row(visible=True):
|
27 |
+
with gr.Column():
|
28 |
+
with gr.Row():
|
29 |
+
search_text = gr.Textbox(value=fn_query_on_load, placeholder='Search..', label=None)
|
30 |
+
|
31 |
+
with gr.Row():
|
32 |
+
submit_btn = gr.Button("Submit", variant='primary')
|
33 |
+
clear_btn = gr.ClearButton()
|
34 |
+
|
35 |
+
with gr.Row(visible=True):
|
36 |
+
output_images = gr.Gallery(value=fn_refresh, interactive=False, every=5)
|
37 |
+
|
38 |
+
|
39 |
+
def clear_data():
|
40 |
+
return {
|
41 |
+
output_images: None,
|
42 |
+
search_text: None
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
clear_btn.click(clear_data, None, [output_images, search_text])
|
47 |
+
|
48 |
+
|
49 |
+
def func_generate(query):
|
50 |
+
global is_clicked
|
51 |
+
is_clicked = True
|
52 |
+
prompt = query + ' in the style of bulb'
|
53 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True,
|
54 |
+
return_tensors="pt")
|
55 |
+
input_ids = text_input.input_ids.to(torch_device)
|
56 |
+
|
57 |
+
# Get token embeddings
|
58 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
59 |
+
position_embeddings = pos_emb_layer(position_ids)
|
60 |
+
|
61 |
+
s = 0
|
62 |
+
for i in range(5):
|
63 |
+
token_embeddings = token_emb_layer(input_ids)
|
64 |
+
# The new embedding - our special birb word
|
65 |
+
replacement_token_embedding = concept_embeds[i].to(torch_device)
|
66 |
+
|
67 |
+
# Insert this into the token embeddings
|
68 |
+
token_embeddings[0, torch.where(input_ids[0] == 22373)] = replacement_token_embedding.to(torch_device)
|
69 |
+
|
70 |
+
# Combine with pos embs
|
71 |
+
input_embeddings = token_embeddings + position_embeddings
|
72 |
+
|
73 |
+
# Feed through to get final output embs
|
74 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
75 |
+
|
76 |
+
# And generate an image with this:
|
77 |
+
|
78 |
+
s = random.randint(s + 1, s + 30)
|
79 |
+
g = torch.manual_seed(s)
|
80 |
+
output = generate_with_embs(text_input, modified_output_embeddings, output=out_img_list[i], generator=g)
|
81 |
+
#output_images.append(dict(seed=s, output=output))
|
82 |
+
|
83 |
+
is_clicked = False
|
84 |
+
|
85 |
+
return None
|
86 |
+
|
87 |
+
|
88 |
+
submit_btn.click(
|
89 |
+
func_generate,
|
90 |
+
[search_text],
|
91 |
+
None
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
'''
|
96 |
+
Launch the app
|
97 |
+
'''
|
98 |
+
app.queue.launch(share=True)
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
pillow
|
4 |
+
gradio
|
5 |
+
numpy
|
6 |
+
transformers==4.25.1
|
7 |
+
diffusers
|
8 |
+
ftfy
|
9 |
+
accelerate
|
utils.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from base64 import b64encode
|
2 |
+
|
3 |
+
import numpy
|
4 |
+
import torch
|
5 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
6 |
+
# from huggingface_hub import notebook_login
|
7 |
+
|
8 |
+
# For video display:
|
9 |
+
from IPython.display import HTML
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
from pathlib import Path
|
12 |
+
from PIL import Image
|
13 |
+
from torch import autocast
|
14 |
+
from torchvision import transforms as tfms
|
15 |
+
from tqdm.auto import tqdm
|
16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
17 |
+
import os
|
18 |
+
|
19 |
+
torch.manual_seed(1)
|
20 |
+
|
21 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
22 |
+
logging.set_verbosity_error()
|
23 |
+
|
24 |
+
# Set device
|
25 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
26 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
27 |
+
|
28 |
+
import gc
|
29 |
+
gc.collect()
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
|
32 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
33 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
34 |
+
|
35 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
36 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
37 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
38 |
+
|
39 |
+
# The UNet model for generating the latents.
|
40 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
41 |
+
|
42 |
+
# The noise scheduler
|
43 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
44 |
+
num_train_timesteps=1000)
|
45 |
+
|
46 |
+
# To the GPU we go!
|
47 |
+
vae = vae.to(torch_device)
|
48 |
+
text_encoder = text_encoder.to(torch_device)
|
49 |
+
unet = unet.to(torch_device)
|
50 |
+
|
51 |
+
|
52 |
+
def load_learned_embeds():
|
53 |
+
pathlist = Path('learned_embeds/').glob('*_learned_embeds.bin')
|
54 |
+
learned_embeds = []
|
55 |
+
|
56 |
+
for path in pathlist:
|
57 |
+
path_in_str = str(path)
|
58 |
+
# print(path_in_str)
|
59 |
+
learned_embeds.append(torch.load(path_in_str))
|
60 |
+
|
61 |
+
concept_embeds_list = []
|
62 |
+
for obj in learned_embeds:
|
63 |
+
for k, v in obj.items():
|
64 |
+
if v.shape[0] == 768:
|
65 |
+
print(k, v.shape)
|
66 |
+
concept_embeds_list.append(v)
|
67 |
+
|
68 |
+
return torch.stack(concept_embeds_list)
|
69 |
+
|
70 |
+
|
71 |
+
def pil_to_latent(input_im):
|
72 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
73 |
+
with torch.no_grad():
|
74 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) # Note scaling
|
75 |
+
return 0.18215 * latent.latent_dist.sample()
|
76 |
+
|
77 |
+
|
78 |
+
def latents_to_pil(latents):
|
79 |
+
# bath of latents -> list of images
|
80 |
+
latents = (1 / 0.18215) * latents
|
81 |
+
with torch.no_grad():
|
82 |
+
image = vae.decode(latents).sample
|
83 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
84 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
85 |
+
images = (image * 255).round().astype("uint8")
|
86 |
+
pil_images = [Image.fromarray(image) for image in images]
|
87 |
+
return pil_images
|
88 |
+
|
89 |
+
|
90 |
+
# Prep Scheduler
|
91 |
+
def set_timesteps(scheduler, num_inference_steps):
|
92 |
+
scheduler.set_timesteps(num_inference_steps)
|
93 |
+
scheduler.timesteps = scheduler.timesteps.to(
|
94 |
+
torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
95 |
+
|
96 |
+
|
97 |
+
def get_output_embeds(input_embeddings):
|
98 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
99 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
100 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len,
|
101 |
+
dtype=input_embeddings.dtype)
|
102 |
+
|
103 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
104 |
+
# so that it doesn't just return the pooled final predictions:
|
105 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
106 |
+
inputs_embeds=input_embeddings,
|
107 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
108 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
109 |
+
output_attentions=None,
|
110 |
+
output_hidden_states=True, # We want the output embs not the final output
|
111 |
+
return_dict=None,
|
112 |
+
)
|
113 |
+
|
114 |
+
# We're interested in the output hidden state only
|
115 |
+
output = encoder_outputs[0]
|
116 |
+
|
117 |
+
# There is a final layer norm we need to pass these through
|
118 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
119 |
+
|
120 |
+
# And now they're ready!
|
121 |
+
return output
|
122 |
+
|
123 |
+
def blue_loss(images):
|
124 |
+
# How far the pixels are from +80% contrast:
|
125 |
+
contrast = 230 # it ranges from -255 to +255
|
126 |
+
contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
|
127 |
+
cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
|
128 |
+
cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
|
129 |
+
cimgs = torch.where(cimgs < 0.0, 0.0, cimgs)
|
130 |
+
error = torch.abs( images - cimgs ).mean()
|
131 |
+
#error = torch.abs(images[:] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
|
132 |
+
print('error: ', error)
|
133 |
+
return error
|
134 |
+
|
135 |
+
# Generating an image with these modified embeddings
|
136 |
+
def generate_with_embs(text_input, text_embeddings, output=None, generator=None, additional_guidance=False):
|
137 |
+
height = 512 # default height of Stable Diffusion
|
138 |
+
width = 512 # default width of Stable Diffusion
|
139 |
+
num_inference_steps = 30 # Number of denoising steps
|
140 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
141 |
+
|
142 |
+
if generator is None:
|
143 |
+
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
|
144 |
+
|
145 |
+
batch_size = 1
|
146 |
+
|
147 |
+
max_length = text_input.input_ids.shape[-1]
|
148 |
+
uncond_input = tokenizer(
|
149 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
150 |
+
)
|
151 |
+
with torch.no_grad():
|
152 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
153 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
154 |
+
|
155 |
+
# Prep Scheduler
|
156 |
+
set_timesteps(scheduler, num_inference_steps)
|
157 |
+
|
158 |
+
# Prep latents
|
159 |
+
latents = torch.randn(
|
160 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
161 |
+
generator=generator,
|
162 |
+
)
|
163 |
+
latents = latents.to(torch_device)
|
164 |
+
latents = latents * scheduler.init_noise_sigma
|
165 |
+
|
166 |
+
# Loop
|
167 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
168 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
169 |
+
latent_model_input = torch.cat([latents] * 2)
|
170 |
+
sigma = scheduler.sigmas[i]
|
171 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
172 |
+
|
173 |
+
# predict the noise residual
|
174 |
+
with torch.no_grad():
|
175 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
176 |
+
|
177 |
+
# perform guidance
|
178 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
179 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
180 |
+
|
181 |
+
#### ADDITIONAL GUIDANCE ###
|
182 |
+
if additional_guidance:
|
183 |
+
blue_loss_scale = 80
|
184 |
+
if i % 5 == 0:
|
185 |
+
# Requires grad on the latents
|
186 |
+
latents = latents.detach().requires_grad_()
|
187 |
+
|
188 |
+
# Get the predicted x0:
|
189 |
+
latents_x0 = latents - sigma * noise_pred
|
190 |
+
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
191 |
+
|
192 |
+
# Decode to image space
|
193 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
194 |
+
|
195 |
+
# Calculate loss
|
196 |
+
loss = blue_loss(denoised_images) * blue_loss_scale
|
197 |
+
|
198 |
+
# Occasionally print it out
|
199 |
+
if i % 10 == 0:
|
200 |
+
print(i, 'loss:', loss.item())
|
201 |
+
|
202 |
+
# Get gradient
|
203 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
204 |
+
|
205 |
+
# Modify the latents based on this gradient
|
206 |
+
latents = latents.detach() - cond_grad * sigma ** 2
|
207 |
+
|
208 |
+
# compute the previous noisy sample x_t -> x_t-1
|
209 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
210 |
+
if output:
|
211 |
+
output = latents_to_pil(latents)[0]
|
212 |
+
|
213 |
+
return latents_to_pil(latents)[0]
|
214 |
+
|
215 |
+
|
216 |
+
concept_embeds = load_learned_embeds()
|
217 |
+
|
218 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
219 |
+
#token_emb_layer # Vocab size 49408, emb_dim 768
|
220 |
+
|
221 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
222 |
+
#pos_emb_layer
|