'''from base64 import b64encode import numpy import torch from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel # For video display: from matplotlib import pyplot as plt from pathlib import Path from PIL import Image from torch import autocast from torchvision import transforms as tfms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, logging import os torch.manual_seed(1) # Supress some unnecessary warnings when loading the CLIPTextModel logging.set_verbosity_error() # Set device torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" import gc gc.collect() torch.cuda.empty_cache() # Load the autoencoder model which will be used to decode the latents into image space. vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") # Load the tokenizer and text encoder to tokenize and encode the text. tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") # The UNet model for generating the latents. unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") # The noise scheduler scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) # To the GPU we go! vae = vae.to(torch_device) text_encoder = text_encoder.to(torch_device) unet = unet.to(torch_device) def load_learned_embeds(): pathlist = Path('learned_embeds/').glob('*_learned_embeds.bin') learned_embeds = [] for path in pathlist: path_in_str = str(path) # print(path_in_str) learned_embeds.append(torch.load(path_in_str)) concept_embeds_list = [] for obj in learned_embeds: for k, v in obj.items(): if v.shape[0] == 768: print(k, v.shape) concept_embeds_list.append(v) return torch.stack(concept_embeds_list) def pil_to_latent(input_im): # Single image -> single latent in a batch (so size 1, 4, 64, 64) with torch.no_grad(): latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device) * 2 - 1) # Note scaling return 0.18215 * latent.latent_dist.sample() def latents_to_pil(latents): # bath of latents -> list of images latents = (1 / 0.18215) * latents with torch.no_grad(): image = vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.detach().cpu().permute(0, 2, 3, 1).numpy() images = (image * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images # Prep Scheduler def set_timesteps(scheduler, num_inference_steps): scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to( torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925 def get_output_embeds(input_embeddings): # CLIP's text model uses causal mask, so we prepare it here: bsz, seq_len = input_embeddings.shape[:2] causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) # Getting the output embeddings involves calling the model with passing output_hidden_states=True # so that it doesn't just return the pooled final predictions: encoder_outputs = text_encoder.text_model.encoder( inputs_embeds=input_embeddings, attention_mask=None, # We aren't using an attention mask so that can be None causal_attention_mask=causal_attention_mask.to(torch_device), output_attentions=None, output_hidden_states=True, # We want the output embs not the final output return_dict=None, ) # We're interested in the output hidden state only output = encoder_outputs[0] # There is a final layer norm we need to pass these through output = text_encoder.text_model.final_layer_norm(output) # And now they're ready! return output def blue_loss(images): # How far the pixels are from +80% contrast: contrast = 230 # it ranges from -255 to +255 contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast)) cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 ) cimgs = torch.where(cimgs > 1.0, 1.0, cimgs) cimgs = torch.where(cimgs < 0.0, 0.0, cimgs) error = torch.abs( images - cimgs ).mean() #error = torch.abs(images[:] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel print('error: ', error) return error # Generating an image with these modified embeddings def generate_with_embs(text_input, text_embeddings, output=None, generator=None, additional_guidance=False): height = 512 # default height of Stable Diffusion width = 512 # default width of Stable Diffusion num_inference_steps = 30 # Number of denoising steps guidance_scale = 7.5 # Scale for classifier-free guidance if generator is None: generator = torch.manual_seed(32) # Seed generator to create the inital latent noise batch_size = 1 max_length = text_input.input_ids.shape[-1] uncond_input = tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" ) with torch.no_grad(): uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # Prep Scheduler set_timesteps(scheduler, num_inference_steps) # Prep latents latents = torch.randn( (batch_size, unet.in_channels, height // 8, width // 8), generator=generator, ) latents = latents.to(torch_device) latents = latents * scheduler.init_noise_sigma # Loop for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. latent_model_input = torch.cat([latents] * 2) sigma = scheduler.sigmas[i] latent_model_input = scheduler.scale_model_input(latent_model_input, t) # predict the noise residual with torch.no_grad(): noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] # perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) #### ADDITIONAL GUIDANCE ### if additional_guidance: blue_loss_scale = 80 if i % 5 == 0: # Requires grad on the latents latents = latents.detach().requires_grad_() # Get the predicted x0: latents_x0 = latents - sigma * noise_pred # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample # Decode to image space denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1) # Calculate loss loss = blue_loss(denoised_images) * blue_loss_scale # Occasionally print it out if i % 10 == 0: print(i, 'loss:', loss.item()) # Get gradient cond_grad = torch.autograd.grad(loss, latents)[0] # Modify the latents based on this gradient latents = latents.detach() - cond_grad * sigma ** 2 # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample if output: output = latents_to_pil(latents)[0] return latents_to_pil(latents)[0] concept_embeds = load_learned_embeds() token_emb_layer = text_encoder.text_model.embeddings.token_embedding #token_emb_layer # Vocab size 49408, emb_dim 768 pos_emb_layer = text_encoder.text_model.embeddings.position_embedding #pos_emb_layer '''