File size: 6,265 Bytes
0601fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os, time, math
import pandas as pd
from datasets import Dataset
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
import torch
from PIL import Image
from peft import get_peft_model, LoraConfig
import argparse


def load_custom_dataset_from_csv(csv_file, image_folder):
    data = pd.read_csv(csv_file)
    
    questions = data['question'].tolist()
    images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
    answers = data['answer'].tolist()
    
    return Dataset.from_dict({
        'question': questions,
        'image': images,
        'answer': answers
    })


def load_custom_dataset_from_parquet(parquet_file, image_folder):
    data = pd.read_parquet(parquet_file)
    
    questions = data['question'].tolist()
    images = [os.path.join(image_folder, img) for img in data['image'].tolist()]
    answers = data['answer'].tolist()
    
    return Dataset.from_dict({
        'question': questions,
        'image': images,
        'answer': answers
    })


def load_dataset_by_type(metadata_type, dataset_dir, image_folder):
    if metadata_type == "csv":
        return load_custom_dataset_from_csv(
            os.path.join(dataset_dir, 'train_samples.csv'),
            image_folder
        )
    elif metadata_type == "parquet":
        return load_custom_dataset_from_parquet(
            os.path.join(dataset_dir, 'train.parquet'),
            image_folder
        )
    else:
        raise ValueError("Unsupported metadata type. Use 'csv' or 'parquet'.")


def load_model_and_args(use_qlora, model_id, device, output_dir):
    if use_qlora:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16  # Changed from bfloat16 to float16
        )
        lora_config = LoraConfig(
            r=8,
            target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
            task_type="CAUSAL_LM"
        )
        
        model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map={"": 0})
        model = get_peft_model(model, lora_config)
        model.print_trainable_parameters()
        
        args = TrainingArguments(
            output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
            num_train_epochs=2,
            remove_unused_columns=False,
            per_device_train_batch_size=1,
            gradient_accumulation_steps=4,
            warmup_steps=2,
            learning_rate=2e-5,
            weight_decay=1e-6,
            logging_steps=100,
            optim="adamw_hf",
            save_strategy="steps",
            save_steps=1000,
            save_total_limit=1,
            fp16=True,  # Changed from bf16 to fp16
            report_to=["tensorboard"],
            dataloader_pin_memory=False
        )
        
        return model, args
    else:
        model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16).to(device)  # Changed from bfloat16 to float16
        for param in model.vision_tower.parameters():
            param.requires_grad = False

        for param in model.multi_modal_projector.parameters():
            param.requires_grad = True
        
        args = TrainingArguments(
            output_dir=os.path.join(output_dir, f"{math.floor(time.time())}"),
            num_train_epochs=2,
            remove_unused_columns=False,
            per_device_train_batch_size=4,
            gradient_accumulation_steps=4,
            warmup_steps=2,
            learning_rate=2e-5,
            weight_decay=1e-6,
            logging_steps=100,
            optim="paged_adamw_8bit",
            save_strategy="steps",
            save_steps=1000,
            save_total_limit=1,
            fp16=True,  # Changed from bf16 to fp16
            report_to=["tensorboard"],
            dataloader_pin_memory=False
        )

        return model, args


def main(args):
    dataset_dir = args.dataset_dir
    model_id = args.model_id
    output_dir = args.output_dir
    metadata_type = args.metadata_type
    
    dataset = load_dataset_by_type(metadata_type, dataset_dir, os.path.join(dataset_dir, 'images'))
    train_val_split = dataset.train_test_split(test_size=0.1)
    
    train_ds = train_val_split['train']
    val_ds = train_val_split['test']

    processor = PaliGemmaProcessor.from_pretrained(model_id)
    device = "cuda"

    model, args = load_model_and_args(args.use_qlora, model_id, device, output_dir)

    def collate_fn(examples):
        texts = [example["question"] for example in examples]
        labels = [example['answer'] for example in examples]
        images = [Image.open(example['image']).convert("RGB") for example in examples]
        tokens = processor(text=texts, images=images, suffix=labels, return_tensors="pt", padding="longest")
        tokens = tokens.to(torch.float16).to(device)  # Changed from bfloat16 to float16
        return tokens
    
    trainer = Trainer(
        model=model,
        train_dataset=train_ds,
        eval_dataset=val_ds,
        data_collator=collate_fn,
        args=args
    )
    
    trainer.train()


def parse_args():
    parser = argparse.ArgumentParser(description="Train a model with custom dataset")
    parser.add_argument('--dataset_dir', type=str, default='./dataset', help='Path to the folder containing the images')
    parser.add_argument('--model_id', type=str, default='google/paligemma-3b-pt-224', help='Model ID to use for training')
    parser.add_argument('--output_dir', type=str, default='./output', help='Directory to save the output')
    parser.add_argument('--use_qlora', type=bool, default=False, help='Use QLoRA for training')
    parser.add_argument('--metadata_type', type=str, default='parquet', choices=['csv', 'parquet'], help='Metadata format (csv or parquet)')
    return parser.parse_args()

    
if __name__ == "__main__":
    args = parse_args()
    main(args)