Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
import torch | |
import pandas as pd | |
import numpy as np | |
# import os | |
# os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
st.markdown("### Some Model") | |
# st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True) | |
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter | |
loaded_tokenizer = AutoTokenizer.from_pretrained("test_model") | |
loaded_model = AutoModelForSequenceClassification.from_pretrained("test_model") | |
# title_text = st.text_area("TITLE HERE") | |
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент | |
# from transformers import pipeline | |
# pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") | |
# raw_predictions = pipe(text) | |
# # тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost | |
# st.markdown(f"{raw_predictions}") | |
# # выводим результаты модели в текстовое поле, на потеху пользователю | |
# title_text = st.text_area("TITLE HERE", "input your title") | |
title_text = st.text_input("TITLE HERE") | |
summary_text = st.text_area("SUMMARY HERE") | |
text = title_text + " " + summary_text | |
title_input = loaded_tokenizer(title_text, padding="max_length", truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
title_res = loaded_model(**title_input) | |
title_probs = torch.softmax(title_res.logits, dim=1).cpu().numpy()[0] | |
st.markdown(" ".join(str(x) for x in list(title_probs))) | |
summary_input = loaded_tokenizer(summary_text, padding="max_length", truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
summary_res = loaded_model(**summary_input) | |
summary_probs = torch.softmax(summary_res.logits, dim=1).cpu().numpy()[0] | |
st.markdown(" ".join(str(x) for x in list(summary_probs))) | |
text_input = loaded_tokenizer(text, padding="max_length", truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
text_res = loaded_model(**text_input) | |
text_probs = torch.softmax(text_res.logits, dim=1).cpu().numpy()[0] | |
st.markdown(" ".join(str(x) for x in list(text_probs))) | |
probs = np.stack([title_probs, summary_probs, text_probs], axis=1) | |
chart_data = pd.DataFrame( | |
probs, | |
columns=["title", "summary", "title + summary"]) | |
st.bar_chart(chart_data) | |