Spaces:
Running
on
Zero
Running
on
Zero
Commit
β’
0a44dc6
1
Parent(s):
46c2a69
fix
Browse files
app.py
CHANGED
@@ -23,21 +23,6 @@ retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
|
|
23 |
session.mount('http://', HTTPAdapter(max_retries=retries))
|
24 |
|
25 |
|
26 |
-
def proportion_non_ascii(s):
|
27 |
-
"""
|
28 |
-
Compute the proportion of non-ASCII characters in a string.
|
29 |
-
|
30 |
-
Parameters:
|
31 |
-
s (str): The input string.
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
float: The proportion of non-ASCII characters in the string.
|
35 |
-
"""
|
36 |
-
non_ascii_count = sum(1 for c in s if ord(c) > 127)
|
37 |
-
total_chars = len(s)
|
38 |
-
return non_ascii_count / total_chars if total_chars > 0 else 0.0
|
39 |
-
|
40 |
-
|
41 |
class QualityModel(nn.Module, PyTorchModelHubMixin):
|
42 |
def __init__(self, config):
|
43 |
super(QualityModel, self).__init__()
|
@@ -95,7 +80,7 @@ def plot_and_df(texts, preds):
|
|
95 |
def run_quality_check(dataset, column, batch_size, num_examples):
|
96 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
97 |
if "error" in info_resp:
|
98 |
-
yield "β " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
99 |
return
|
100 |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
101 |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
@@ -106,10 +91,10 @@ def run_quality_check(dataset, column, batch_size, num_examples):
|
|
106 |
try:
|
107 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
|
108 |
except Exception as error:
|
109 |
-
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
110 |
return
|
111 |
texts = data[column].to_list()
|
112 |
-
texts_sample = data.sample(100, shuffle=True, seed=16).to_pandas()
|
113 |
# batch_size = 100
|
114 |
predictions, texts_processed = [], []
|
115 |
num_examples = min(len(texts), num_examples)
|
@@ -118,18 +103,18 @@ def run_quality_check(dataset, column, batch_size, num_examples):
|
|
118 |
batch_predictions = predict(batch_texts)
|
119 |
predictions.extend(batch_predictions)
|
120 |
texts_processed.extend(batch_texts)
|
121 |
-
yield {"check in progress...": min(i+batch_size, num_examples) / num_examples}, *plot_and_df(texts_processed, predictions),
|
122 |
|
123 |
-
with multiprocessing.Pool(processes=8) as pool:
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
plt.hist(props, bins=20, range=(0., 1.))
|
128 |
-
plt.title('Histogram of proportion of non-ASCII characters')
|
129 |
-
plt.xlabel('Proportion of non-ASCII characters')
|
130 |
-
plt.ylabel('Number of texts')
|
131 |
-
|
132 |
-
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), plt.gcf(), texts_sample
|
133 |
|
134 |
|
135 |
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
|
@@ -199,12 +184,41 @@ def call_perspective_api(texts_df, column_name):#, s):
|
|
199 |
return req_att_scores
|
200 |
if i % 10 == 0:
|
201 |
plot_toxicity(req_att_scores)
|
202 |
-
yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame()
|
203 |
|
204 |
plot_toxicity(req_att_scores)
|
205 |
yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts, **req_att_scores})
|
206 |
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
with gr.Blocks() as demo:
|
209 |
gr.Markdown(
|
210 |
"""
|
@@ -248,14 +262,18 @@ with gr.Blocks() as demo:
|
|
248 |
gr.Markdown("### High")
|
249 |
df_high = gr.DataFrame()
|
250 |
|
251 |
-
non_ascii_hist = gr.Plot()
|
252 |
texts_sample_df = gr.DataFrame(visible=False)
|
253 |
gr_check_btn.click(
|
254 |
run_quality_check,
|
255 |
inputs=[dataset_name, text_column, batch_size, num_examples],
|
256 |
-
outputs=[progress_bar, plot, df_low, df_medium, df_high,
|
257 |
)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
259 |
gr_toxicity_btn = gr.Button("Run perpspective API to check toxicity of random samples.")
|
260 |
toxicity_progress_bar = gr.Label(show_label=False)
|
261 |
toxicity_hist = gr.Plot()
|
|
|
23 |
session.mount('http://', HTTPAdapter(max_retries=retries))
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class QualityModel(nn.Module, PyTorchModelHubMixin):
|
27 |
def __init__(self, config):
|
28 |
super(QualityModel, self).__init__()
|
|
|
80 |
def run_quality_check(dataset, column, batch_size, num_examples):
|
81 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
82 |
if "error" in info_resp:
|
83 |
+
yield "β " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
84 |
return
|
85 |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
86 |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
|
|
91 |
try:
|
92 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
|
93 |
except Exception as error:
|
94 |
+
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
|
95 |
return
|
96 |
texts = data[column].to_list()
|
97 |
+
# texts_sample = data.sample(100, shuffle=True, seed=16).to_pandas()
|
98 |
# batch_size = 100
|
99 |
predictions, texts_processed = [], []
|
100 |
num_examples = min(len(texts), num_examples)
|
|
|
103 |
batch_predictions = predict(batch_texts)
|
104 |
predictions.extend(batch_predictions)
|
105 |
texts_processed.extend(batch_texts)
|
106 |
+
yield {"check in progress...": min(i+batch_size, num_examples) / num_examples}, *plot_and_df(texts_processed, predictions), pd.DataFrame()
|
107 |
|
108 |
+
# with multiprocessing.Pool(processes=8) as pool:
|
109 |
+
# props = pool.map(proportion_non_ascii, texts)
|
110 |
+
#
|
111 |
+
# # non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
|
112 |
+
# plt.hist(props, bins=20, range=(0., 1.))
|
113 |
+
# plt.title('Histogram of proportion of non-ASCII characters')
|
114 |
+
# plt.xlabel('Proportion of non-ASCII characters')
|
115 |
+
# plt.ylabel('Number of texts')
|
116 |
|
117 |
+
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), data
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
|
120 |
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY")
|
|
|
184 |
return req_att_scores
|
185 |
if i % 10 == 0:
|
186 |
plot_toxicity(req_att_scores)
|
187 |
+
yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts[:i], **req_att_scores})
|
188 |
|
189 |
plot_toxicity(req_att_scores)
|
190 |
yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({column_name: texts, **req_att_scores})
|
191 |
|
192 |
|
193 |
+
def proportion_non_ascii(s):
|
194 |
+
"""
|
195 |
+
Compute the proportion of non-ASCII characters in a string.
|
196 |
+
|
197 |
+
Parameters:
|
198 |
+
s (str): The input string.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
float: The proportion of non-ASCII characters in the string.
|
202 |
+
"""
|
203 |
+
non_ascii_count = sum(1 for c in s if ord(c) > 127)
|
204 |
+
total_chars = len(s)
|
205 |
+
return non_ascii_count / total_chars if total_chars > 0 else 0.0
|
206 |
+
|
207 |
+
|
208 |
+
def non_ascii_check(texts_df, column_name):
|
209 |
+
texts = texts_df[column_name].to_list()
|
210 |
+
with multiprocessing.Pool(processes=8) as pool:
|
211 |
+
props = pool.map(proportion_non_ascii, texts)
|
212 |
+
|
213 |
+
# non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
|
214 |
+
plt.hist(props, bins=20, range=(0., 1.))
|
215 |
+
plt.title('Histogram of proportion of non-ASCII characters')
|
216 |
+
plt.xlabel('Proportion of non-ASCII characters')
|
217 |
+
plt.ylabel('Number of texts')
|
218 |
+
|
219 |
+
return plt.gcf()
|
220 |
+
|
221 |
+
|
222 |
with gr.Blocks() as demo:
|
223 |
gr.Markdown(
|
224 |
"""
|
|
|
262 |
gr.Markdown("### High")
|
263 |
df_high = gr.DataFrame()
|
264 |
|
|
|
265 |
texts_sample_df = gr.DataFrame(visible=False)
|
266 |
gr_check_btn.click(
|
267 |
run_quality_check,
|
268 |
inputs=[dataset_name, text_column, batch_size, num_examples],
|
269 |
+
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_sample_df]
|
270 |
)
|
271 |
|
272 |
+
gr_ascii_btn = gr.Button("Non ascii chars.")
|
273 |
+
non_ascii_hist = gr.Plot()
|
274 |
+
|
275 |
+
gr_ascii_btn.click(non_ascii_check, inputs=[texts_sample_df, text_column], outputs=[non_ascii_hist])
|
276 |
+
|
277 |
gr_toxicity_btn = gr.Button("Run perpspective API to check toxicity of random samples.")
|
278 |
toxicity_progress_bar = gr.Label(show_label=False)
|
279 |
toxicity_hist = gr.Plot()
|