Spaces:
Running
on
Zero
Running
on
Zero
Commit
β’
352586a
1
Parent(s):
44cbba4
add prop of non-ascii
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
1 |
import requests
|
2 |
from collections import Counter
|
3 |
from requests.adapters import HTTPAdapter, Retry
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import polars as pl
|
|
|
|
|
8 |
import spaces
|
9 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
10 |
from huggingface_hub import PyTorchModelHubMixin
|
@@ -19,6 +22,21 @@ retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
|
|
19 |
session.mount('http://', HTTPAdapter(max_retries=retries))
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
class QualityModel(nn.Module, PyTorchModelHubMixin):
|
23 |
def __init__(self, config):
|
24 |
super(QualityModel, self).__init__()
|
@@ -76,7 +94,7 @@ def run_quality_check(dataset, column, batch_size, num_examples):
|
|
76 |
# config = "default"
|
77 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
78 |
if "error" in info_resp:
|
79 |
-
yield "β " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
80 |
return
|
81 |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
82 |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
@@ -87,7 +105,7 @@ def run_quality_check(dataset, column, batch_size, num_examples):
|
|
87 |
try:
|
88 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
|
89 |
except Exception as error:
|
90 |
-
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
91 |
return
|
92 |
texts = data[column].to_list()
|
93 |
# batch_size = 100
|
@@ -98,8 +116,18 @@ def run_quality_check(dataset, column, batch_size, num_examples):
|
|
98 |
batch_predictions = predict(batch_texts)
|
99 |
predictions.extend(batch_predictions)
|
100 |
texts_processed.extend(batch_texts)
|
101 |
-
yield {"check in progress...": (i+batch_size) / num_examples}, *plot_and_df(texts_processed, predictions)
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
with gr.Blocks() as demo:
|
105 |
gr.Markdown(
|
@@ -135,6 +163,7 @@ with gr.Blocks() as demo:
|
|
135 |
progress_bar = gr.Label(show_label=False)
|
136 |
plot = gr.BarPlot()
|
137 |
|
|
|
138 |
with gr.Accordion("Explore some individual examples for each class", open=False):
|
139 |
gr.Markdown("### Low")
|
140 |
df_low = gr.DataFrame()
|
@@ -142,6 +171,9 @@ with gr.Blocks() as demo:
|
|
142 |
df_medium = gr.DataFrame()
|
143 |
gr.Markdown("### High")
|
144 |
df_high = gr.DataFrame()
|
145 |
-
|
|
|
|
|
|
|
146 |
|
147 |
demo.launch()
|
|
|
1 |
import requests
|
2 |
from collections import Counter
|
3 |
from requests.adapters import HTTPAdapter, Retry
|
4 |
+
import multiprocessing
|
5 |
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
import polars as pl
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
import spaces
|
12 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
13 |
from huggingface_hub import PyTorchModelHubMixin
|
|
|
22 |
session.mount('http://', HTTPAdapter(max_retries=retries))
|
23 |
|
24 |
|
25 |
+
def proportion_non_ascii(s):
|
26 |
+
"""
|
27 |
+
Compute the proportion of non-ASCII characters in a string.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
s (str): The input string.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
float: The proportion of non-ASCII characters in the string.
|
34 |
+
"""
|
35 |
+
non_ascii_count = sum(1 for c in s if ord(c) > 127)
|
36 |
+
total_chars = len(s)
|
37 |
+
return non_ascii_count / total_chars if total_chars > 0 else 0.0
|
38 |
+
|
39 |
+
|
40 |
class QualityModel(nn.Module, PyTorchModelHubMixin):
|
41 |
def __init__(self, config):
|
42 |
super(QualityModel, self).__init__()
|
|
|
94 |
# config = "default"
|
95 |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
|
96 |
if "error" in info_resp:
|
97 |
+
yield "β " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), plt.Figure()
|
98 |
return
|
99 |
config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
|
100 |
split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
|
|
|
105 |
try:
|
106 |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/partial-{split}/0000.parquet", columns=[column])
|
107 |
except Exception as error:
|
108 |
+
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), plt.Figure()
|
109 |
return
|
110 |
texts = data[column].to_list()
|
111 |
# batch_size = 100
|
|
|
116 |
batch_predictions = predict(batch_texts)
|
117 |
predictions.extend(batch_predictions)
|
118 |
texts_processed.extend(batch_texts)
|
119 |
+
yield {"check in progress...": (i+batch_size) / num_examples}, *plot_and_df(texts_processed, predictions), plt.Figure()
|
120 |
+
|
121 |
+
with multiprocessing.Pool(processes=8) as pool:
|
122 |
+
props = pool.map(proportion_non_ascii, texts)
|
123 |
+
|
124 |
+
# non_ascii_df = pd.DataFrame.from_dict({"prop_non_ascii": props, "text": texts})
|
125 |
+
plt.hist(props, bins=20, range=(0., 1.))
|
126 |
+
plt.title('Histogram of proportion of non-ASCII characters')
|
127 |
+
plt.xlabel('Proportion of non-ASCII characters')
|
128 |
+
plt.ylabel('Number of texts')
|
129 |
+
|
130 |
+
yield {"finished": 1.}, *plot_and_df(texts_processed, predictions), plt.gcf()
|
131 |
|
132 |
with gr.Blocks() as demo:
|
133 |
gr.Markdown(
|
|
|
163 |
progress_bar = gr.Label(show_label=False)
|
164 |
plot = gr.BarPlot()
|
165 |
|
166 |
+
|
167 |
with gr.Accordion("Explore some individual examples for each class", open=False):
|
168 |
gr.Markdown("### Low")
|
169 |
df_low = gr.DataFrame()
|
|
|
171 |
df_medium = gr.DataFrame()
|
172 |
gr.Markdown("### High")
|
173 |
df_high = gr.DataFrame()
|
174 |
+
|
175 |
+
# non_ascii_hist = gr.DataFrame(visible=False)
|
176 |
+
non_ascii_hist = gr.Plot()
|
177 |
+
gr_check_btn.click(run_quality_check, inputs=[dataset_name, text_column, batch_size, num_examples], outputs=[progress_bar, plot, df_low, df_medium, df_high, non_ascii_hist])
|
178 |
|
179 |
demo.launch()
|