polinaeterna HF staff commited on
Commit
6fae90e
β€’
1 Parent(s): 8782f16

add config and split dropdown

Browse files
Files changed (1) hide show
  1. app.py +60 -22
app.py CHANGED
@@ -19,7 +19,7 @@ from transformers import AutoModel, AutoTokenizer, AutoConfig
19
  from tqdm import tqdm
20
 
21
 
22
- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
23
 
24
 
25
  session = requests.Session()
@@ -74,7 +74,7 @@ def plot_and_df(texts, preds):
74
  )
75
  # counts.reset_index(inplace=True)
76
  return (
77
- gr.BarPlot(counts_df, x="quality", y="count"),
78
  texts_df[texts_df["quality"] == "Low"][["text"]][:20],
79
  texts_df[texts_df["quality"] == "Medium"][["text"]][:20],
80
  texts_df[texts_df["quality"] == "High"][["text"]][:20],
@@ -82,14 +82,14 @@ def plot_and_df(texts, preds):
82
 
83
 
84
  @spaces.GPU
85
- def run_quality_check(dataset, column, batch_size, num_examples):
86
- info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
87
- if "error" in info_resp:
88
- yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
89
- return
90
- config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
91
- split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
92
- iter(info_resp["dataset_info"][config]["splits"]))
93
  logging.info(f"Fetching data for {dataset} {config} {split}")
94
  try:
95
  data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
@@ -238,30 +238,68 @@ with gr.Blocks() as demo:
238
  ## Select dataset and text column
239
  """
240
  )
241
- dataset_name = HuggingfaceHubSearch(
242
- label="Hub Dataset ID",
243
- placeholder="Search for dataset id on Huggingface",
244
- search_type="dataset",
245
- # value="fka/awesome-chatgpt-prompts",
246
- )
 
 
 
 
 
247
  # config_name = "default" # TODO: user input
248
  with gr.Accordion("Dataset preview", open=False):
249
- @gr.render(inputs=dataset_name)
250
- def embed(name):
251
  html_code = f"""
252
  <iframe
253
- src="https://huggingface.co/datasets/{name}/embed/viewer/default/train"
254
  frameborder="0"
255
  width="100%"
256
- height="700px"
257
  ></iframe>
258
  """
259
  return gr.HTML(value=html_code)
260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
  text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
262
 
263
  gr.Markdown("## Run nvidia quality classifier")
264
- batch_size = gr.Slider(0, 128, 32, step=8, label="Inference batch size (set this to smaller value if this space crashes.)")
265
  num_examples = gr.Number(500, label="Number of first examples to check")
266
  gr_check_btn = gr.Button("Check Dataset")
267
  progress_bar = gr.Label(show_label=False)
@@ -279,7 +317,7 @@ with gr.Blocks() as demo:
279
  texts_df = gr.DataFrame(visible=False)
280
  gr_check_btn.click(
281
  run_quality_check,
282
- inputs=[dataset_name, text_column, batch_size, num_examples],
283
  outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
284
  )
285
 
 
19
  from tqdm import tqdm
20
 
21
 
22
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
23
 
24
 
25
  session = requests.Session()
 
74
  )
75
  # counts.reset_index(inplace=True)
76
  return (
77
+ gr.BarPlot(counts_df, x="quality", y="count", sort=None),
78
  texts_df[texts_df["quality"] == "Low"][["text"]][:20],
79
  texts_df[texts_df["quality"] == "Medium"][["text"]][:20],
80
  texts_df[texts_df["quality"] == "High"][["text"]][:20],
 
82
 
83
 
84
  @spaces.GPU
85
+ def run_quality_check(dataset, config, split, column, batch_size, num_examples):
86
+ # info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
87
+ # if "error" in info_resp:
88
+ # yield "❌ " + info_resp["error"], gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
89
+ # return
90
+ # config = "default" if "default" in info_resp["dataset_info"] else next(iter(info_resp["dataset_info"]))
91
+ # split = "train" if "train" in info_resp["dataset_info"][config]["splits"] else next(
92
+ # iter(info_resp["dataset_info"][config]["splits"]))
93
  logging.info(f"Fetching data for {dataset} {config} {split}")
94
  try:
95
  data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{config}/{split}/0000.parquet", columns=[column])
 
238
  ## Select dataset and text column
239
  """
240
  )
241
+ with gr.Row():
242
+ with gr.Column(scale=3):
243
+ dataset_name = HuggingfaceHubSearch(
244
+ label="Hub Dataset ID",
245
+ placeholder="Search for dataset id on Huggingface",
246
+ search_type="dataset",
247
+ # value="fka/awesome-chatgpt-prompts",
248
+ )
249
+ subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
250
+ split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
251
+
252
  # config_name = "default" # TODO: user input
253
  with gr.Accordion("Dataset preview", open=False):
254
+ @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
255
+ def embed(name, subset, split):
256
  html_code = f"""
257
  <iframe
258
+ src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
259
  frameborder="0"
260
  width="100%"
261
+ height="600px"
262
  ></iframe>
263
  """
264
  return gr.HTML(value=html_code)
265
 
266
+ def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str):
267
+ if "/" not in dataset.strip().strip("/"):
268
+ return {
269
+ subset_dropdown: gr.Dropdown(visible=False),
270
+ split_dropdown: gr.Dropdown(visible=False),
271
+ }
272
+ info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
273
+ if "error" in info_resp:
274
+ return {
275
+ subset_dropdown: gr.Dropdown(visible=False),
276
+ split_dropdown: gr.Dropdown(visible=False),
277
+ }
278
+ subsets: list[str] = list(info_resp["dataset_info"])
279
+ subset = default_subset if default_subset in subsets else subsets[0]
280
+ splits: list[str] = info_resp["dataset_info"][subset]["splits"]
281
+ split = default_split if default_split in splits else splits[0]
282
+ return {
283
+ subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
284
+ split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
285
+ }
286
+
287
+ @dataset_name.change(inputs=[dataset_name], outputs=[subset_dropdown, split_dropdown])
288
+ def show_input_from_subset_dropdown(dataset: str) -> dict:
289
+ return _resolve_dataset_selection(dataset, default_subset="default", default_split="train")
290
+
291
+ @subset_dropdown.change(inputs=[dataset_name, subset_dropdown], outputs=[subset_dropdown, split_dropdown])
292
+ def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
293
+ return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train")
294
+
295
+ @split_dropdown.change(inputs=[dataset_name, subset_dropdown, split_dropdown], outputs=[subset_dropdown, split_dropdown])
296
+ def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
297
+ return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split)
298
+
299
  text_column = gr.Textbox(placeholder="text", label="Text colum name to check (data must be non-nested, raw texts!)")
300
 
301
  gr.Markdown("## Run nvidia quality classifier")
302
+ batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size (set this to smaller value if this space crashes.)")
303
  num_examples = gr.Number(500, label="Number of first examples to check")
304
  gr_check_btn = gr.Button("Check Dataset")
305
  progress_bar = gr.Label(show_label=False)
 
317
  texts_df = gr.DataFrame(visible=False)
318
  gr_check_btn.click(
319
  run_quality_check,
320
+ inputs=[dataset_name, subset_dropdown, split_dropdown, text_column, batch_size, num_examples],
321
  outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df]
322
  )
323