Spaces:
Sleeping
Sleeping
vkovacs
commited on
Commit
Β·
158b5a1
1
Parent(s):
c315ef7
PoC
Browse files
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: MORES demo
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.23.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: emotion classification
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoModelForSequenceClassification
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
PATH = '/data/' # at least 150GB storage needs to be attached
|
9 |
+
os.environ['TRANSFORMERS_CACHE'] = PATH
|
10 |
+
os.environ['HF_HOME'] = PATH
|
11 |
+
os.environ['HF_DATASETS_CACHE'] = PATH
|
12 |
+
os.environ['TORCH_HOME'] = PATH
|
13 |
+
|
14 |
+
HF_TOKEN = os.environ["hf_read"]
|
15 |
+
|
16 |
+
SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"}
|
17 |
+
LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"]
|
18 |
+
|
19 |
+
|
20 |
+
def build_huggingface_path(language: str):
|
21 |
+
if language == "Czech" or language == "Slovakian":
|
22 |
+
return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4"
|
23 |
+
return "poltextlab/xlm-roberta-large-pooled-MORES"
|
24 |
+
|
25 |
+
def predict(text, model_id, tokenizer_id):
|
26 |
+
device = torch.device("cpu")
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
29 |
+
model.to(device)
|
30 |
+
|
31 |
+
inputs = tokenizer(text,
|
32 |
+
max_length=512,
|
33 |
+
truncation=True,
|
34 |
+
padding="do_not_pad",
|
35 |
+
return_tensors="pt").to(device)
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
logits = model(**inputs).logits
|
40 |
+
|
41 |
+
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
|
42 |
+
output_pred = {model.config.id2label[i]: probs[i] for i in np.argsort(probs)[::-1]}
|
43 |
+
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
|
44 |
+
return output_pred, output_info
|
45 |
+
|
46 |
+
def predict_wrapper(text, language):
|
47 |
+
model_id = build_huggingface_path(language)
|
48 |
+
tokenizer_id = "xlm-roberta-large"
|
49 |
+
return predict(text, model_id, tokenizer_id)
|
50 |
+
|
51 |
+
|
52 |
+
with gr.Blocks() as demo:
|
53 |
+
gr.Interface(
|
54 |
+
fn=predict_wrapper,
|
55 |
+
inputs=[gr.Textbox(lines=6, label="Input"),
|
56 |
+
gr.Dropdown(LANGUAGES, label="Language")],
|
57 |
+
outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
torch==2.2.1
|
3 |
+
transformers==4.39.1
|
4 |
+
sentencepiece==0.2.0
|
5 |
+
accelerate
|
6 |
+
spacy
|
7 |
+
huspacy
|
utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
from interfaces.cap import languages as languages_cap
|
5 |
+
from interfaces.cap import domains as domains_cap
|
6 |
+
|
7 |
+
from interfaces.cap import build_huggingface_path as hf_cap_path
|
8 |
+
from interfaces.manifesto import build_huggingface_path as hf_manifesto_path
|
9 |
+
from interfaces.sentiment import build_huggingface_path as hf_sentiment_path
|
10 |
+
from interfaces.emotion import build_huggingface_path as hf_emotion_path
|
11 |
+
|
12 |
+
HF_TOKEN = os.environ["hf_read"]
|
13 |
+
|
14 |
+
# should be a temporary solution
|
15 |
+
models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")]
|
16 |
+
|
17 |
+
domains_cap = list(domains_cap.values())
|
18 |
+
for language in languages_cap:
|
19 |
+
for domain in domains_cap:
|
20 |
+
models.append(hf_cap_path(language, domain))
|
21 |
+
|
22 |
+
tokenizers = ["xlm-roberta-large"]
|
23 |
+
|
24 |
+
def download_hf_models():
|
25 |
+
for model_id in models:
|
26 |
+
AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload",
|
27 |
+
token=HF_TOKEN)
|
28 |
+
for tokenizer_id in tokenizers:
|
29 |
+
AutoTokenizer.from_pretrained(tokenizer_id)
|
30 |
+
|