Spaces:
Runtime error
Runtime error
eljanmahammadli
commited on
Commit
·
e2a79fa
1
Parent(s):
db77dd7
added new decoder only LM as a humanizer + UI suport
Browse files- app.py +36 -31
- humanize.py +120 -35
app.py
CHANGED
@@ -4,22 +4,21 @@ export GOOGLE_APPLICATION_CREDENTIALS="gcp_creds.json"
|
|
4 |
"""
|
5 |
|
6 |
import re
|
7 |
-
import requests
|
8 |
from typing import Dict
|
9 |
from collections import defaultdict
|
10 |
from datetime import date, datetime
|
|
|
11 |
import gradio as gr
|
12 |
-
from scipy.special import softmax
|
13 |
-
import language_tool_python
|
14 |
import nltk
|
15 |
import torch
|
16 |
import numpy as np
|
17 |
-
from
|
|
|
18 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
19 |
|
20 |
from utils import remove_special_characters, split_text_allow_complete_sentences_nltk
|
21 |
from google_search import google_search, months, domain_list, build_date
|
22 |
-
from humanize import
|
23 |
from ai_generate import generate
|
24 |
|
25 |
print(f"Using device: {device}")
|
@@ -115,7 +114,6 @@ def split_text_from_refs(text: str, sep="\n"):
|
|
115 |
def ends_with_references(text):
|
116 |
# Define a regular expression pattern for variations of "References:"
|
117 |
pattern = re.compile(r"\b[Rr]eferences:\s*$", re.IGNORECASE | re.MULTILINE)
|
118 |
-
|
119 |
# Check if the text ends with any form of "References:"
|
120 |
return bool(pattern.search(text.strip()))
|
121 |
|
@@ -400,7 +398,7 @@ def humanize(
|
|
400 |
) -> str:
|
401 |
print("Humanizing text...")
|
402 |
body, references = split_text_from_refs(text)
|
403 |
-
result =
|
404 |
text=body,
|
405 |
model_name=model,
|
406 |
temperature=temperature,
|
@@ -442,6 +440,13 @@ def update_structure(format_choice):
|
|
442 |
return gr.update(value="Introduction, Body, Conclusion", interactive=True)
|
443 |
|
444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
import uuid
|
446 |
import json
|
447 |
from datetime import datetime
|
@@ -859,30 +864,6 @@ def create_interface():
|
|
859 |
"""
|
860 |
generate_btn = gr.Button("Generate Article", variant="primary")
|
861 |
|
862 |
-
with gr.Accordion("Advanced Humanizer Settings", open=False):
|
863 |
-
with gr.Row():
|
864 |
-
model_dropdown = gr.Radio(
|
865 |
-
choices=[
|
866 |
-
"Base Model",
|
867 |
-
"Large Model",
|
868 |
-
"XL Model",
|
869 |
-
],
|
870 |
-
value="XL Model",
|
871 |
-
label="Humanizer Model Version",
|
872 |
-
)
|
873 |
-
with gr.Row():
|
874 |
-
temperature_slider = gr.Slider(
|
875 |
-
minimum=0.5, maximum=2.0, step=0.1, value=1.1, label="Temperature"
|
876 |
-
)
|
877 |
-
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=40, label="Top k")
|
878 |
-
with gr.Row():
|
879 |
-
repetition_penalty_slider = gr.Slider(
|
880 |
-
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
|
881 |
-
)
|
882 |
-
length_penalty_slider = gr.Slider(
|
883 |
-
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
|
884 |
-
)
|
885 |
-
|
886 |
with gr.Column(scale=3):
|
887 |
with gr.Tab("Text Generator"):
|
888 |
output_article = gr.Textbox(label="Generated Article", lines=20)
|
@@ -899,6 +880,27 @@ def create_interface():
|
|
899 |
ai_check_result = gr.Label(label="AI Check Result")
|
900 |
mc_check_result = gr.Label(label="Creator Check Result")
|
901 |
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
902 |
humanize_btn = gr.Button("Humanize")
|
903 |
# humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
|
904 |
# copy_to_input_btn = gr.Button("Copy to Input for AI Check")
|
@@ -937,7 +939,10 @@ def create_interface():
|
|
937 |
ai_comments.change(regenerate_visible, inputs=output_article, outputs=regenerate_btn)
|
938 |
ai_check_btn.click(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
|
939 |
|
|
|
|
|
940 |
input_format.change(fn=update_structure, inputs=input_format, outputs=input_structure)
|
|
|
941 |
|
942 |
generate_btn.click(
|
943 |
fn=generate_and_format,
|
|
|
4 |
"""
|
5 |
|
6 |
import re
|
|
|
7 |
from typing import Dict
|
8 |
from collections import defaultdict
|
9 |
from datetime import date, datetime
|
10 |
+
|
11 |
import gradio as gr
|
|
|
|
|
12 |
import nltk
|
13 |
import torch
|
14 |
import numpy as np
|
15 |
+
from scipy.special import softmax
|
16 |
+
import language_tool_python
|
17 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
18 |
|
19 |
from utils import remove_special_characters, split_text_allow_complete_sentences_nltk
|
20 |
from google_search import google_search, months, domain_list, build_date
|
21 |
+
from humanize import humanize_text, device
|
22 |
from ai_generate import generate
|
23 |
|
24 |
print(f"Using device: {device}")
|
|
|
114 |
def ends_with_references(text):
|
115 |
# Define a regular expression pattern for variations of "References:"
|
116 |
pattern = re.compile(r"\b[Rr]eferences:\s*$", re.IGNORECASE | re.MULTILINE)
|
|
|
117 |
# Check if the text ends with any form of "References:"
|
118 |
return bool(pattern.search(text.strip()))
|
119 |
|
|
|
398 |
) -> str:
|
399 |
print("Humanizing text...")
|
400 |
body, references = split_text_from_refs(text)
|
401 |
+
result = humanize_text(
|
402 |
text=body,
|
403 |
model_name=model,
|
404 |
temperature=temperature,
|
|
|
440 |
return gr.update(value="Introduction, Body, Conclusion", interactive=True)
|
441 |
|
442 |
|
443 |
+
def update_temperature(model_dropdown):
|
444 |
+
if model_dropdown == "Standard Model":
|
445 |
+
return gr.update(value=1.2, interactive=True)
|
446 |
+
elif model_dropdown == "Advanced Model (Beta)":
|
447 |
+
return gr.update(value=1.0, interactive=True)
|
448 |
+
|
449 |
+
|
450 |
import uuid
|
451 |
import json
|
452 |
from datetime import datetime
|
|
|
864 |
"""
|
865 |
generate_btn = gr.Button("Generate Article", variant="primary")
|
866 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
867 |
with gr.Column(scale=3):
|
868 |
with gr.Tab("Text Generator"):
|
869 |
output_article = gr.Textbox(label="Generated Article", lines=20)
|
|
|
880 |
ai_check_result = gr.Label(label="AI Check Result")
|
881 |
mc_check_result = gr.Label(label="Creator Check Result")
|
882 |
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
|
883 |
+
|
884 |
+
with gr.Accordion("Advanced Humanizer Settings", open=False):
|
885 |
+
with gr.Row():
|
886 |
+
model_dropdown = gr.Radio(
|
887 |
+
choices=["Standard Model", "Advanced Model (Beta)"],
|
888 |
+
value="Advanced Model (Beta)",
|
889 |
+
label="Humanizer Model Version",
|
890 |
+
)
|
891 |
+
with gr.Row():
|
892 |
+
temperature_slider = gr.Slider(
|
893 |
+
minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Temperature"
|
894 |
+
)
|
895 |
+
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=40, label="Top k")
|
896 |
+
with gr.Row():
|
897 |
+
repetition_penalty_slider = gr.Slider(
|
898 |
+
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
|
899 |
+
)
|
900 |
+
length_penalty_slider = gr.Slider(
|
901 |
+
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
|
902 |
+
)
|
903 |
+
|
904 |
humanize_btn = gr.Button("Humanize")
|
905 |
# humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
|
906 |
# copy_to_input_btn = gr.Button("Copy to Input for AI Check")
|
|
|
939 |
ai_comments.change(regenerate_visible, inputs=output_article, outputs=regenerate_btn)
|
940 |
ai_check_btn.click(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
|
941 |
|
942 |
+
# Update the default structure based on the selected format
|
943 |
+
# e.g. "Plain Text" for certain formats
|
944 |
input_format.change(fn=update_structure, inputs=input_format, outputs=input_structure)
|
945 |
+
model_dropdown.change(fn=update_temperature, inputs=model_dropdown, outputs=temperature_slider)
|
946 |
|
947 |
generate_btn.click(
|
948 |
fn=generate_and_format,
|
humanize.py
CHANGED
@@ -1,15 +1,17 @@
|
|
1 |
import gc
|
2 |
import torch
|
3 |
-
from nltk import sent_tokenize
|
4 |
import nltk
|
5 |
-
from
|
6 |
import gradio as gr
|
7 |
from peft import PeftModel
|
8 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
9 |
|
10 |
nltk.download("punkt")
|
|
|
|
|
|
|
|
|
11 |
# autodetect the available device
|
12 |
-
GPU_IDX = 1 # which GPU to use
|
13 |
if torch.cuda.is_available():
|
14 |
num_gpus = torch.cuda.device_count()
|
15 |
print(f"Number of available GPUs: {num_gpus}")
|
@@ -20,26 +22,34 @@ else:
|
|
20 |
print("CUDA is not available. Using CPU instead.")
|
21 |
device = torch.device("cpu")
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
-
def
|
43 |
inputs = ["Please paraphrase this sentence: " + sentence for sentence in sentences]
|
44 |
inputs = tokenizer(inputs, return_tensors="pt", padding=True, truncation=True).to(model.device)
|
45 |
outputs = model.generate(
|
@@ -55,10 +65,61 @@ def paraphrase_sentences(model, tokenizer, sentences, temperature, repetition_pe
|
|
55 |
return answers
|
56 |
|
57 |
|
58 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
text,
|
60 |
progress=gr.Progress(),
|
61 |
-
model_name="
|
62 |
temperature=1.2,
|
63 |
repetition_penalty=1.0,
|
64 |
top_k=50,
|
@@ -69,15 +130,16 @@ def paraphrase_text(
|
|
69 |
Paragraphs are stored as a number of sentences per paragraph.
|
70 |
"""
|
71 |
progress(0, desc="Starting to Humanize")
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
# Split the text into paragraphs and then into sentences
|
77 |
paragraphs = text.split("\n")
|
78 |
all_sentences = []
|
79 |
sentences_per_paragraph = []
|
80 |
-
|
81 |
for paragraph in paragraphs:
|
82 |
sentences = sent_tokenize(paragraph)
|
83 |
sentences_per_paragraph.append(len(sentences))
|
@@ -85,16 +147,39 @@ def paraphrase_text(
|
|
85 |
|
86 |
# Process all sentences in batches
|
87 |
paraphrased_sentences = []
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Reconstruct paragraphs
|
100 |
humanized_paragraphs = []
|
|
|
1 |
import gc
|
2 |
import torch
|
|
|
3 |
import nltk
|
4 |
+
from nltk import sent_tokenize
|
5 |
import gradio as gr
|
6 |
from peft import PeftModel
|
7 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
8 |
|
9 |
nltk.download("punkt")
|
10 |
+
|
11 |
+
GPU_IDX = 1 # which GPU to use, starts from 0
|
12 |
+
BATCH_SIZE = 64 # number of sentences to process in one batch
|
13 |
+
|
14 |
# autodetect the available device
|
|
|
15 |
if torch.cuda.is_available():
|
16 |
num_gpus = torch.cuda.device_count()
|
17 |
print(f"Number of available GPUs: {num_gpus}")
|
|
|
22 |
print("CUDA is not available. Using CPU instead.")
|
23 |
device = torch.device("cpu")
|
24 |
|
25 |
+
# ----------------------------
|
26 |
+
# load encoder-decoder (sequence to sequence) language model
|
27 |
+
seq2seq = "polygraf-ai/poly-humanizer-XL-merged-v2"
|
28 |
+
seq2seq_model = T5ForConditionalGeneration.from_pretrained(seq2seq, torch_dtype=torch.bfloat16).to(device)
|
29 |
+
seq2seq_tokenizer = T5Tokenizer.from_pretrained(seq2seq)
|
30 |
+
print(f"Loaded model: {seq2seq}, Num. params: {seq2seq_model.num_parameters()}")
|
31 |
+
# ----------------------------
|
32 |
+
# load decoder-only (causal) language model
|
33 |
+
from unsloth import FastLanguageModel
|
34 |
+
from unsloth.chat_templates import get_chat_template
|
35 |
|
36 |
+
# can only use GPU 0 when using unsloth FastLanguageModel
|
37 |
+
max_seq_length = 2048 # any can be chosed since RoPE Scaling is used
|
38 |
+
dtype = None # None for auto detection. Float16for Tesla T4, V100, Bfloat16 for Ampere+
|
39 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage
|
40 |
+
dec_only = "polygraf-ai/phi-3-mini-rank-128"
|
41 |
+
dec_only_model, dec_only_tokenizer = FastLanguageModel.from_pretrained(
|
42 |
+
model_name=dec_only,
|
43 |
+
max_seq_length=max_seq_length,
|
44 |
+
dtype=dtype,
|
45 |
+
load_in_4bit=load_in_4bit,
|
46 |
+
device_map="cuda:0",
|
47 |
+
)
|
48 |
+
FastLanguageModel.for_inference(dec_only_model) # native 2x faster inference
|
49 |
+
print(f"Loaded model: {dec_only}, Num. params: {dec_only_model.num_parameters()}")
|
50 |
|
51 |
|
52 |
+
def humanize_batch_seq2seq(model, tokenizer, sentences, temperature, repetition_penalty, top_k, length_penalty):
|
53 |
inputs = ["Please paraphrase this sentence: " + sentence for sentence in sentences]
|
54 |
inputs = tokenizer(inputs, return_tensors="pt", padding=True, truncation=True).to(model.device)
|
55 |
outputs = model.generate(
|
|
|
65 |
return answers
|
66 |
|
67 |
|
68 |
+
def humanize_batch_decoder_only(model, tokenizer, sentences, temperature, repetition_penalty, top_k, length_penalty):
|
69 |
+
pre_prompt = "As a humanizer model, your task is to rewrite the following sentence to make it more human-like. Return only the paraphrased sentence. \n\n"
|
70 |
+
# Construct the messages_batch using the tokenized sentences
|
71 |
+
messages_batch = [{"from": "human", "value": f"{pre_prompt}{sentence}"} for sentence in sentences]
|
72 |
+
# Initialize the tokenizer with the chat template
|
73 |
+
tokenizer = get_chat_template(
|
74 |
+
tokenizer,
|
75 |
+
chat_template="phi-3",
|
76 |
+
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # ShareGPT style
|
77 |
+
)
|
78 |
+
|
79 |
+
# Enable native 2x faster inference
|
80 |
+
FastLanguageModel.for_inference(model)
|
81 |
+
# Initialize an empty list to store responses
|
82 |
+
responses = []
|
83 |
+
# Process each message individually
|
84 |
+
for message in messages_batch:
|
85 |
+
# Apply the chat template to the individual message
|
86 |
+
inputs = tokenizer.apply_chat_template(
|
87 |
+
[message], # Wrap the message in a list
|
88 |
+
tokenize=True,
|
89 |
+
add_generation_prompt=True, # Must add for generation
|
90 |
+
return_tensors="pt",
|
91 |
+
).to("cuda")
|
92 |
+
# Generate the response for the individual message
|
93 |
+
outputs = model.generate(
|
94 |
+
input_ids=inputs,
|
95 |
+
max_new_tokens=1024,
|
96 |
+
use_cache=True,
|
97 |
+
do_sample=True,
|
98 |
+
temperature=temperature,
|
99 |
+
repetition_penalty=repetition_penalty,
|
100 |
+
top_k=top_k,
|
101 |
+
length_penalty=length_penalty,
|
102 |
+
)
|
103 |
+
# Decode the output and store it
|
104 |
+
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=False)
|
105 |
+
responses.append(decoded_output[0])
|
106 |
+
|
107 |
+
# Print or return the responses
|
108 |
+
generated_sentences = []
|
109 |
+
for idx, response in enumerate(responses):
|
110 |
+
generated_sentence = response.split("<|assistant|>")[1].split("<|end|>")[0].strip()
|
111 |
+
generated_sentences.append(generated_sentence)
|
112 |
+
print(sentences[idx])
|
113 |
+
print(generated_sentence)
|
114 |
+
print()
|
115 |
+
|
116 |
+
return generated_sentences
|
117 |
+
|
118 |
+
|
119 |
+
def humanize_text(
|
120 |
text,
|
121 |
progress=gr.Progress(),
|
122 |
+
model_name="Standard Model",
|
123 |
temperature=1.2,
|
124 |
repetition_penalty=1.0,
|
125 |
top_k=50,
|
|
|
130 |
Paragraphs are stored as a number of sentences per paragraph.
|
131 |
"""
|
132 |
progress(0, desc="Starting to Humanize")
|
133 |
+
|
134 |
+
# Map model names to their respective processing functions
|
135 |
+
model_map = {"Standard Model": humanize_batch_seq2seq, "Advanced Model (Beta)": humanize_batch_decoder_only}
|
136 |
+
assert model_name in model_map, f"Invalid model name: {model_name}"
|
137 |
+
process_function = model_map[model_name]
|
138 |
|
139 |
# Split the text into paragraphs and then into sentences
|
140 |
paragraphs = text.split("\n")
|
141 |
all_sentences = []
|
142 |
sentences_per_paragraph = []
|
|
|
143 |
for paragraph in paragraphs:
|
144 |
sentences = sent_tokenize(paragraph)
|
145 |
sentences_per_paragraph.append(len(sentences))
|
|
|
147 |
|
148 |
# Process all sentences in batches
|
149 |
paraphrased_sentences = []
|
150 |
+
current_batch_size = BATCH_SIZE
|
151 |
+
i = 0
|
152 |
+
|
153 |
+
while i < len(all_sentences):
|
154 |
+
try:
|
155 |
+
batch_sentences = all_sentences[i : i + current_batch_size]
|
156 |
+
|
157 |
+
# Call the selected processing function
|
158 |
+
paraphrased_batch = process_function(
|
159 |
+
seq2seq_model if model_name == "Standard Model" else dec_only_model,
|
160 |
+
seq2seq_tokenizer if model_name == "Standard Model" else dec_only_tokenizer,
|
161 |
+
batch_sentences,
|
162 |
+
temperature,
|
163 |
+
repetition_penalty,
|
164 |
+
top_k,
|
165 |
+
length_penalty,
|
166 |
+
)
|
167 |
+
|
168 |
+
paraphrased_sentences.extend(paraphrased_batch)
|
169 |
+
i += current_batch_size # Move to the next batch
|
170 |
+
torch.cuda.empty_cache()
|
171 |
+
gc.collect()
|
172 |
+
progress.update(i / len(all_sentences))
|
173 |
|
174 |
+
except RuntimeError as e:
|
175 |
+
if "out of memory" in str(e):
|
176 |
+
# Reduce the batch size by half and retry
|
177 |
+
current_batch_size = max(1, current_batch_size // 2)
|
178 |
+
print(f"Out of memory, reducing batch size to {current_batch_size}. Retrying...")
|
179 |
+
torch.cuda.empty_cache()
|
180 |
+
gc.collect()
|
181 |
+
else:
|
182 |
+
raise e
|
183 |
|
184 |
# Reconstruct paragraphs
|
185 |
humanized_paragraphs = []
|