import gradio as gr import torch from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler from diffusers.utils import export_to_gif import random def generate_gif(image, animation_type): # Load the motion adapter adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16) # Load SD 1.5 based finetuned model model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE" pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16) # Scheduler setup scheduler = DDIMScheduler( clip_sample=False, beta_start=0.00085, beta_end=0.012, beta_schedule="linear", timestep_spacing="trailing", steps_offset=1 ) pipe.scheduler = scheduler # Enable memory savings pipe.enable_vae_slicing() pipe.enable_model_cpu_offload() # Load ip_adapter pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") # Load the selected motion adapter pipe.load_lora_weights(f"guoyww/animatediff-motion-lora-{animation_type}", adapter_name=animation_type) # Generate a random seed seed = random.randint(0, 2**32 - 1) prompt = "best quality, high quality,photorealisric" # Set adapter weights for the selected adapter adapter_weight = [0.75] pipe.set_adapters([animation_type], adapter_weights=adapter_weight) # Generate GIF output = pipe( prompt=prompt, num_frames=16, guidance_scale=7.5, num_inference_steps=30, ip_adapter_image=image, generator=torch.Generator("cpu").manual_seed(seed), ) frames = output.frames[0] gif_path = "output_animation.gif" export_to_gif(frames, gif_path) return gif_path # Gradio interface iface = gr.Interface( fn=generate_gif, inputs=[gr.Image(type="pil"), gr.Radio(["zoom-out", "tilt-up", "pan-left"])], outputs=gr.Image(type="pil", label="Generated GIF"), title="AnimateDiff + IP Adapter Demo", description="Upload an image and select an motion module type to generate a GIF!" ) iface.launch(debug=True,share=True)